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Abstract

Recent studies by the author have shown that the “Integrated Medium for Planetary
Exploration” (IMPEx) FP7-SPACE project is evolving towards becoming a fully oper-
ational Virtual Observatory (VO). The service-oriented architecture provides state-of-
the-art web services and a robust XML data model which enables the exploitation of
observational- and simulated data collated from research performed within planetary
plasma- and magnetospheric physics.
The author shows in this thesis primarily that the elaborated infrastructure of IMPEx
is extendable with new services, complying with the IMPEx data model and proto-
col. Secondly, the author focuses on a recently revived software paradigm: functional
programming.
This paradigm originates from initial attempts to develop a general language for eval-
uating mathematical expressions: lambda calculus. This thesis examines the features
provided by this formalism and how they are transformed into a modern program-
ming language. It is shown using the example of the object-functional language Scala
how functional aspects are merged into a wider spread paradigm in software devel-
opment: object-oriented programming.
The result of this thesis is a centralised portal for IMPEx which enables the usage of
IMPEx web services with frameworks available in the scope of Scala. It is shown how
functional aspects support distributed and scalable software with their concise syntax
and semantics, as well as handling of XML structured documents. It is concluded
that Scala can be considered a new base technology for the development of more
integrated simulation environments enabling complex scientific workflows.
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Kurzfassung

Vorangegangene Studien des Autors haben gezeigt, dass sich das FP7-SPACE Projekt
“Integrated Medium for Planetary Exploration” (IMPEx) in Richtung eines vollstän-
dig definierten Virtuellen Observatorium (VO) entwickelt. Die serviceorientierte Ar-
chitektur stellt state-of-the art Webservices und ein robustes XML Datenmodell zur
Verfügung, welche die Nutzung von Observations- und Simulationsdaten aus For-
schungsergebnissen im Bereich der Plasma- und Magnetosphärenphysik ermöglicht.
Der Autor zeigt in dieser Arbeit primär wie diese erarbeitete Infrastruktur mit neu-
en Services erweiterbar ist, die ebenfalls mit dem IMPEx Datenmodell und Protokoll
konform sind. Sekundär beschäftigt sich der Autor mit einem kürzlich wiederbeleb-
ten Softwareparadigma: Funktionale Programmierung.
Dieses Paradigma hat ihren Usprung in den ersten Versuchen eine allgemeine Spra-
che für die Evaluierung von mathematischen Ausdrücken zu entwickeln: das Lambda-
Kalkül. Diese Arbeit untersucht die Eigenschaften dieses Formalismus und zeigt auf,
wie diese in eine moderne Programmiersprache transformiert werden. Es wird am
Beispiel der objekt-funktionalen Sprache Scala gezeigt wie funktionale Aspekte mit
einem weitaus mehr verbreiteten Paradigma verschmolzen werden können: Objekt-
orientierte Programmierung.
Das Ergebnis dieser Arbeit ist ein zentralisiertes IMPEx Portal, welches die Verwen-
dung von IMPEx Webservices mit Hilfe der entsprechenden Frameworks in Scala er-
möglicht. Es wird gezeigt, wie funktionale Aspekte mit deren kompakten Syntax und
Semantik die Entwicklung von verteilter und skalierbarer Software unterstützen so-
wie die Handhabung von XML Dokumenten vereinfachen. Es wird zum Schluss ge-
kommen, dass Scala als neue Basistechnologie für die Entwicklung von integrierten
Simulationsumgebungen gesehen werden kann, welche in weiterer Folge komplexe
wissenschaftliche Workflows ermöglichen.
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1. Introduction

The EU FP7-SPACE project “Integrated Medium for Planetary Exploration” (IMPEx)
is currently evolving towards a standardised Virtual Observatory (VO) and is reach-
ing a major milestone in development of distinct services and databases which were
specified in Topf (2012a). After a challenging process of defining homogenous web
service interfaces and elaborating a robust data model for specific semantics, the
project is now entering its first public review phase. This thesis is a product of this
phase as it is discovering new possibilities to provide the actual IMPEx services to
a wider audience for scientific and educational purposes through one single entry
point, the IMPEx portal.

1.1. Present Status and Motivation

Currently the IMPEx project is in its implementation phase after definition of the
IMPEx architecture which is comprised of three distinct service layers according to
Topf (2012a, pp. 25): the user layer, the tool layer and the resource layer. The basis
of the IMPEx infrastructure is formed by the resource layer which provides access
to stateless data services through metadata registries for observational and simula-
tion data. The data services are comprised of searchable XML trees compliant with
the IMPEx data model described in Topf (2012a, pp. 30). These metadata files are
accessible through the database endpoints described in the IMPEx configuration file
(see appendix A). On top of the resource layer all database endpoints provide com-
putational services via SOAP interfaces which are needed to exploit the actual data
for a selected subset in the metadata tree. Finally the IMPEx tools AMDA, 3DView
and ClWeb are glued together with a SOAP interface, the IMPEx workspace, to real-
ize exchange of selected metadata from one tool to another Topf (2012a, pp. 27). At
the moment the IMPEx tools are integrating the data and computational services in
their environment to be able to process and visualise the data in different ways. To
exchange view configurations between tools on the client side the XML-RPC based
interface SAMP is used which is actually the only way to be able to synchronously
work with two tools in the IMPEx environment. This can be seen as a drawback to us-
ability but the solution with SAMP solves the problem pragmatically and still doesn’t
conflict with the major goals of IMPEx. Even in the respective recommendation doc-
ument of IVOA for SAMP by Taylor et al. (2011) the provided solution is described
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1. Introduction

as having a “modest scope” and hence is not designed to provide an optimal mes-
saging system for all different scenarios. This kind of inter-tool communication does
not provide security or overall integrity of the messages being delivered and there-
fore the tools must take care of the validation and the establishment of the respective
secure environments where SAMP calls can be processed.

The main idea behind this thesis is to look forward into the future with regard to
tool- and more specifically server integration including also an efficient use of the
client machine through modern web-based technologies. The main reasoning behind
increased integration of computational aspects on the server-side is that rudimentary
inter-tool communcation on the client-side can be avoided but also security aspects
can be handled centralised as opposed to the current architecture. The community
of the IMPEx project also sees a problem in the different clients as it is difficult to
find the needed functionalities through the current project environment. Furthermore
the trade-off between interoperability and the splitting of functionalities over a wide
range of applications, each with its own proprietary interactive model is seen as a
major risk in the future where the system is adding new models and tools. There must
be a clear settlement of the IMPEx infrastructure between integration and service
orientation.

Within the IMPEx project this particular challenge was identified as a key aspect
which needs to be studied further to gain momentum for follow-up projects. The
proposed IMPEx portal and its related research and technical development is seen as
an optimal testbed for further integration in the user- as well as the resource layer.
This increased integration does not interfere with the two key aspects of IMPEx with
regard to service orientation: the data model and the web service interfaces. They
will still provide the connection to the data- and computational services of IMPEx
and will not loose its basic feature to be composable in a variety of configurations.
But the IMPEx portal must be designed in a way to on one hand increase the usage
of the client’s computing power and on the other hand to overcome the problem of
extensive data transfer between databases and tools within the service ecosystem of
IMPEx. The idea here is to provide a homogenous API to the scattered services of IM-
PEx at the portal which can be be exploited both locally and from remote machines.

The server-side technology of the portal which connects to the IMPEx services must
be able to handle the XML trees and results from the web services in a way which sup-
ports the functional orientation of the models and databases which are settled behind
those interfaces. With this approach it is easier to decompose the large datastructures
and modelling routines of the IMPEx simulation databases to be able to delegate par-
ticular standard procedures of the workflows described in the IMPEx science cases
in Topf (2012a, chap. 5) to the portal server or even the clients machine. This thesis
will use the functional programming paradigm as a basis to develop the architecture
of the portal since it will also be relevant in the future to integrate simulation models
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1. Introduction

directly into web enabled programming languages rather than building up complex
interfaces to imperative low level programming languages such as Fortran1.

To understand the reasoning behind using aspects of functional programming for the
IMPEx portal this thesis will provide a detailed study of all necessary key elements by
showing the fundamental ideas of functional programming and their application in
the real world. This approach will clearly show where the IMPEx infrastructure can
be improved among other things by functional aspects with regard to tool and ser-
vice integration to eliminate the risks identified within the current highly distributed
environment.

1.2. Conceptual Formulation

Based on the present status of IMPEx and the respective open task of developing an
IMPEx portal, the author has formulated a major research question which will be
answered in course of preliminary studies of the chosen base technology as well as
evaluation of portal user requirements:

“Which concepts and abilities of functional programming are suitable and needed for imple-
mentation of an up-to-date portal for scientific data and model resources access focusing on
scalability and expandability?”

1.3. Objectives of this Thesis

In accordance with the major research question four main objectives of this thesis
were elaborated:

1. Study of basic and advanced concepts of functional programming and their
application to object-oriented programming languages such as Scala and in a
wider sense JavaScript.

2. Study of the applicability of object-functional programming languages such as
Scala in distributed frameworks and respective tool chains.

3. Design and conception of a prototype portal for the IMPEx project as a first test
case for an integration of new tools in the IMPEx infrastructure using Scala.
Exploitation of the IMPEx protocol (tree.xml, methods.wsdl) and visualisation
of XML based data.

1Fortran is a traditional procedural programming language still widely used for numerical calcula-
tions in the scientific community. See also: http://www.fortran.com/
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1. Introduction

4. Study of the applicability of the resulting IMPEx portal in the context of ad-
vanced workflow systems and enterprise service bus solutions for future con-
sideration.

1.4. Approach and Methodology

The main steps of the technical developments in this thesis are comprised of:

• Definition of the main elements of functional programming and study of their
advantages in distributed computational data networks and service-oriented
infrastructures.

• Analysis of the application of functional principles into object-oriented pro-
gramming languages in particular to Scala but also JavaScript.

• Definition of main concepts of object-functional programming dealing with scal-
ability, immutability and concurrency which are needed for the implementation
of the IMPEx portal.

• Evaluation of the flexibility of object-functional programming languages such
as Scala with regard to further integration into web based applications, common
frameworks and tool chains.

• Architectural design and prototyping of the IMPEx service portal based on the
results of the preceding study of Scala and JavaScript concepts and respective
documentation for future projects.

1.5. Composition of this Thesis

This thesis is composed of the following theoretical chapters:

1. Introduction to elements of functional programming in general.

2. Definition of advanced functional programming concepts and their evolution.

3. Application of functional programming aspects into object-oriented program-
ming.

4. Definition of main features of object-functional programming based on Scala.

The practical sections of this thesis are part of the IMPEx project and are dealing
with the design and implementation of an IMPEx portal using functional principles
elaborated in the theoretical chapters. These functional principles are contained in
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1. Introduction

the used base technology, the programming language Scala. The practical sections
are comprised as follows:

1. Evaluation of extended features of object-functional programming based on
Scala.

2. Listing of purpose & aims of the IMPEx portal.

3. Evaluation of the current IMPEx web services and the used data model.

4. Definition of the user requirements and the architectural design of the IMPEx
portal including the presentation of selected functional aspects which are pro-
totyped in course of this thesis.

1.6. Work done by the Author

The design and implementation of the IMPEx portal is content of a working contract
provided by the IMPEx project where the author of this thesis is the selected contract-
ing partner. The emphasis in this task is on finding modern and useful concepts for
the realisation of a service-driven portal and respective documentation of the com-
plete RTD process.
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2. Elements of Functional

Programming

Functional programming has a long history and its roots are found in mathematical
theories in the field of predicate logic elaborated in the thirties of the 20th century.
During the time of the great depression a couple of mathematicians were working on
solving a challenge in logic which was introduced by David Hilbert in the twenties
in the melting pot of Germany’s mathematical research institutions, the Unversity of
Göttingen. He named the challenge “Entscheidungsproblem” (German for “decision
problem”) which was basically comprised of the search for a general algorithm or
method which is able to decide in finite time upon a given set of axioms of a formal
language, if a constructed logical expression is generally valid or not. In this case
“generally valid” means that the proof must imply that every construct satisfying the
axioms is again valid in the formal language. The challenge was officially proposed
in the major work of David Hilbert and Wilhelm Ackermann “Grundzüge der the-
oretischen Logik” in 1928 describing a formalism of elementary mathematical logic,
which is known today as first-order logic (see: Hilbert & Ackermann, 1928).

The term “decidable” in this regard would play a big role in the field of computer
science in the future, since the logic principles defined here form the basis of the
well known computability theory dealing with the question if a problem is solvable
by a given machine and it’s defined syntax and semantics or not. Kurt Gödel was
making the first attempt in 1931 by showing that the challenge is not solvable for log-
ical expressions based on arithmetics of natural numbers. He proved in his “Unvoll-
ständigkeitstheorem” that there are expressions possible for which can not be decided
if they are generally valid or not (see: Gödel, 1931).

Two distinct logicians finally came to a more complete solution to Hilberts challenge
indedepently of each other in the year 1936, namely Alan Turing (Turing, 1936) and
Alonzo Church (Church, 1936). They both made their conclusion that this problem
is generally unsolvable by using newly introduced formalisms which were greatly
influenced by the formal language Gödel used in the “Unvollständigkeitstheorem”.
Both scientists practically worked on the same issue at this time. They studied for-
mal mathematical systems and tried to make theoretical approaches in answering the
question on whether a hypothetic machine could generally solve mathematical prob-
lems by applying a consistent formal language or not. They worked out different
approaches to come to an conclusion - the Lambda Calculus and the Turing-Machine
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2. Elements of Functional Programming

which were consequently used as a basis for computational theory in the upcoming
decades. In order to understand the principles behind functional programming one
must look into these assumptions in computational theory which from the beginning
had to deal with decision problems such as described by Hilbert and Ackermann. As
a first step this thesis will look on the results of Turing and Church which resulted
in the definition of the “Church-Turing-Thesis” and had a tremendous impact on the
forthcoming achievements in theoretical informatics in the 20th century.

2.1. Lambda Calculus and the Turing Machine

In course of their investigations Church and Turing implicitly developed a definition
of a construct which is called an algorithm in informatics today. The idea behind their
work was that every mathematical problem can be constructed through predefined
rules complying to a formal language. Despite of solving a mathematical problem
through their investigations for the well-known “Entscheidungsproblem” their con-
tribution to computational theory was of equal importance. The lambda calculus
was originally designed for examining the solvability of mathematical problems and
therefore basically provided a way to evaluate functions. That is one reason why
lambda calculus as a notation is seen as the historical founding father of functional
programming - everything is expressed by mathematical functions. So what does an
algorithm contain in the formal language of lambda calculus and how does this ap-
proach apply to common programming languages? According to Lippe (2009, p. 23),
lambda calculus being a theory of functions is slightly different to the traditional
meaning of a function in mathematical theory. In mathematical theory a function is a
calculation specification which basically maps a quantity of inputs into a quantity of
outputs with a static binding. Each definition has a concrete result which is yielded
by the function body. In lambda calculus each of these three components of the calcu-
lation specification is represented by a so-called λ-expression. This approach, consid-
ering functions as a set of rules as stated in Barendregt (1981, p. 3) goes back to a “old
fashioned notation” tributed to Dirichlet1, since functions are commonly considered
as graphs consisting of tuples from arguments and values in today’s mathematical
theory.

2.1.1. Lambda-Expressions

There are various deviations of the applications of λ-expressions throughout the liter-
ature which all implement the same basic axioms, which were originally proposed

1Peter Gustav Lejeune Dirichlet was a famous german mathematican, who worked in the field
of number theory in the 19th Century. See: http://www-history.mcs.st-and.ac.uk/

Biographies/Dirichlet.html
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2. Elements of Functional Programming

by Alonzo Church in “The Calculi of Lambda-Conversion” (Church, 1941). Church’s
classical abstract notion is referred to as pure untyped lambda calculus in accordance to
Hudak (1989, p. 364) and has the following elements:

• Variables or identifiers in the form of lower-case letters e.g. x, y, z, ..

• Function abstractions e.g λx.A, which defines an anonymous function with x as
parameter and A as the function body.

• Function applications e.g (FA), which applies the function F to the expression
A

In function abstractions the parameter is usually bound to the function body A over
the λ-notation if it is also occuring inside A, but not necessarily since it can also occur
“freely” in lambda expressions. An example of a free variable in a function body
would be the λ-expression λx.y, where y is not bound like λx and moreover whose
result is always y independently of the argument x. Note that the function body in
this case can also also be a further λ-expression itself. The basic version of a function
abstraction is represented by the identity function λx.x which takes x as parameter
and simply returns x in its body. It can be seen in this basic example that x is now
clearly bound to the function body. A respective application on a identity function
with an argument y is written in lambda calculus λy.(λx.x) (Michaelson, 1988, p. 16).
The definiton of a function, it’s parameters and application are united in one single λ-
expression. The previous examples show that function applications are left-associative
and abstractions are right-associative, following the general associativity properties
in mathematical theory. It may seem a drawback of lambda calculus that a function
abstraction and hence an application can only take one parameter at once. According
to Lippe (2009, p. 25) a function which takes two parameters e.g. f(a, b) = a + b
is represented in lambda calculus as h∗ = λa(λb(a + b)). The reasoning behind this
approach goes back to the findings of Curry (1930) in the field of combinatory logic
where he concluded that a function with n arguments can be attributed to n functions
with one argument. This principle is today known as currying and its programmatic
advantages will be discussed later in this thesis.

It is important to say at this point that the notion of free and bound variables in
lambda calculus is crucial for any composed abstraction and application of lambda-
expressions. In accordance to Harrison (1997, pp. 13) a λ-expression can be used in a
primitive recursive function if one inductively proves it’s free and bound variables.
Lippe (2009, p. 28) shows the induction for M ∈ A, where FV (M) is the quantity of
free variables and BV (M) is the quantitiy of bound variables by using combinatory
logic. As one can see in this proof the variable x is free in M when x ∈ FV (M),
which means that it is only occuring within the function body and is not changeable
from outside. On the other hand it is bound in M when x ∈ BV (M). This includes
any variable denoted with λ if it’s also occuring in the function scope. So far, with
these examination possibilities of λ-expressions one can define functions which apply
to other functions. These abilities already sound familiar to a well-trained program-
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2. Elements of Functional Programming

mer as they are found in popular functional programming languages which will be
shown at a later stage of this thesis.

2.1.2. Lambda-Conversion

With the λ-expressions defined before and their properties on abstractions and appli-
cations there is a need to define basic operations to be able to make transformations
of combined expressions and to show equality of two certain expressions. For this
purpose Church developed two basic axioms in Church (1941), which define the so-
called convertibility of λ-expressions. They both have implemented a mechanism to
substitute and simplify terms in lambda calculus (Barendregt, 1981, pp. 22):

• α-conversion, called “renaming”: λx.M ⇐⇒ λy.[y \ x]M, y /∈ FV (M)

• β-conversion, called “application”: (λx.M)N ⇐⇒ [N \ x]M

As explained in Turner (2007, p. 4) the substitution terms are read in α-conversion
as “replace all bound variables x in an expression M with y and for β-conversion as
“replace all bound variables x in expression M with N . It is important to note that
in order to make the “rename” operation work properly, the new variable y must
not occur as free variable in expression M . According to Hudak (1989, p. 364) these
conversion rules together with the common equivalence relations namely reflexivity,
symmetricity and transitivity form a consistent system in mathematical theory.

It is mentioned in Harrison (1997, p. 18) that proving equality of two λ-expressions
may not be as critical from a computational perspective as transformations of com-
plex λ-expressions into simpler terms. This can also be achieved by the above men-
tioned conversions by removing the equational symmetry in their application so that
the transformation only occurs in one direction, left to right. These operations are
called α-reduction and β-reduction respectively. If an λ-expression can not be reduced
further by β-reductions which means that there is no contained term remaining to be
simplified by this rule it is called to be in normal form (Peyton Jones, 1987, p. 24). Note
that there are λ-expressions which have no normal form because their reduction leads
to the original term.

In order to be able to use the reduction from a computational point of view one must
define a final “state” where one would only have one distinct normal form for a par-
ticular λ-expression. Therefore Alonzo Church and his scholar John B. Rosser defined
the Church-Rosser Theorem to proof uniqueness and existance of a normal form (Church
& Rosser, 1936, p. 479):

1. When M = N , then there exists Q with M
∗

−→ Q and N
∗

−→ Q.

10
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2. If M ∈ A with M
∗

−→ N and M
∗

−→ N , then there exists Q ∈ A with
N

∗

−→ Q and N
∗

−→ Q.

The first theorem states according to Hudak (1989, p. 365) that if there are two equal
λ-expressions, there is one unique normal form where both can be reduced to with λ-
conversion. In this case it does not matter in which order the expressions are reduced.
The second theorem only adds, that reduced λ-expressions only differ in possible α-
reductions (Harrison, 1997, p. 20). It is important to note at this point that there
are two different ways of reduction if there are more reducable terms in an expres-
sion, namely normal-order reduction and applicative-order reduction. They differ from
the order of evaluation of the contained terms. Turner (2007, p. 17) mentions those
approaches in relation to the well known non-strict evaluation or call-by-name reduc-
tion and respectively strict evaluation or call-by-value reduction of expressions. It will
be shown in section 2.4 how these approaches apply to real-world functional pro-
gramming but also why and respectively when it is necessary to choose a dedicated
reduction strategy in programming.

2.1.3. Lambda-Definability

It can clearly be seen from the previously mentioned elements of lambda calculus
that there are still definitions missing which justify Church’s formalism as a program-
ming language in the end. One particular construct which occurs quite frequently in
programming are boolean values. So how can boolean algebra be represented by
λ-expressions? Following the definitions of Lippe (2009, p. 39) boolean values are de-
scribed with the following λ-expressions which are basically two-digit functions:

true ≡ λxy.x

false ≡ λxy.y

Barendregt (1981, p. 133) gives a proof for these definitions, by applying them to an
if − then − else control structure which can be represented as a three-digit function
λxyz.(xyz)BMN . Due to applying β-reduction and inserting the boolean represen-
tations above, where B is the boolean value, the result will be the argument M if
B = λxy.x and N respectively if B = λxy.y. One can then also represent all logical
operators known such as or, and, or not (see: Harrison, 1997, p. 28). As one can al-
ready see with this basic example there is no difference between data structures and
control structures in lambda calculus.

It is interesting in that respect that also natural numbers can be expressed as λ-
expressions and hence are functions in Church’s formal system. Moreover, there is
no other way to represent data in lambda calculus. These special λ-expressions are
called Church numerals which display natural numbers as “descendant” of zero.

11
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These are defined as follows according to Turner (2007, p. 5) for:

0 ≡ λf.λx.x

1 ≡ λf.λx.fx

2 ≡ λf.λf.f(fx)

3 ≡ λf.λf.(f(fx))

. . .

So natural numbers in lambda calculus are nothing more than a function-applying
function f which is repeatedly applied to an argument x. Based on this definition one
can implement all arithmetics on natural numbers. In this thesis only one example
is given on the basis of a function which returns the successor of a specific natural
number represented in λ-expressions based on Barendregt (1981, p. 135):

successor ≡ λn.λf.λx.f(nfx)

The following equation shows how one can find out the successor of a specific Church
numeral by applying β-reduction on the expression, with the original number as ar-
gument. Note that the bound variables of the applied number (in this case 1) are
changed to avoid confusion:

successor(1) ≡ (λn.λf.λx.f(nfx))(λz.λy.zy)

⇒β λf.λx.f((λz.λy.zy)fx)

⇒β λf.λx.f((λy.fy)x)

⇒β λf.λx.f(fx) ≡ 2

One important issue for the forthcoming considerations in this thesis is still open: The
representation of general recursive functions in lambda calculus, since they are not
formally implemented in the syntax of λ-expressions according to Lippe (2009, p. 42).
It is not possible to define a function which applies to itself (e.g. (AA)) because a
function as already discovered, is not named and hence one cannot “refer” to it. In
this case the function would have to be duplicated to be applied to the same function.

Nevertheless it is possible to write iterative procedures like recursions in lambda cal-
culus by introducing the notion of λ-definability which is basically an assumption of
previous claims of Curry and Gödel in the field of elementary number theory as pre-
sented in Church (1936, p. 346). Church states in his thesis that every function of nat-
ural numbers is “effectively calculable” if it is definable by λ-expressions. Moreover it
can be rewritten completely without recursion through the introduction of a construct
which will be later known as the Y-combinator. According to Harrison (1997, pp. 31)
the Y-combinator defines a fixed point Y for a recursive function f as a λ-expression
which can then be used to rewrite the recursion to some simple lambda-abstractions,
so that one satifies the equation f(Y f) = Y f . It is important to note that the rewritten
lambda-abstractions do not have free variables anymore and can be considered as a
closed term. There is a practical application of the Y-combinator described in Paulson
(1996, p. 18) with a basic implementation of a factorial function.
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At a later stage in 1937, Turing proved in his thesis on Computability and λ-definability
(Turing, 1937, pp. 160) that the approach taken by Church can also be applied to his
well-known Turing Machine2 concept. He basically operationalised the lambda cal-
culus as an algorithm on his hypothetical computing machine and showed that his
conclusions on the proof of computability of mathematical functions is equivalent
to Church’s. So what does that finally mean for the implementation of functional
programming languages? Michaelson (1988, p. 9) gives a satisfactory answer: “Any
of the mentioned computational models, can be translated from one to another, so
any fundamental computer language in a broader sense can implement notions of
the lambda-calculus as a programming language”. However, as stated in the begin-
ning of this chapter, the question if a programm will terminate cannot be answered
with the mentioned theoretical approaches. These assumptions are now known as
the “Church-Turing thesis” which today act as a reference point for the evaluation of
computability in programming languages, even if one can only proof their compata-
bility to Church’s and Turing’s assumptions. A computational model which satisfies
these claims is said to be “Turing complete”. Note that it will be of significant impor-
tance in further studies of this thesis that both control structures and data strucutures
can be reduced to functions in a programming language.

2.2. Functional Style

Although lambda calculus is seen as a major cornerstone of computational theory
it was not used in the beginning as a model for programming languages when the
first computers were build. The reason behind that fact was that Turing’s formalism
was more “tangible” since it already described a type of machine which was also
able to memorize and maintain states, as opposed to Church’s approach. As with
the design of the Turing machine, the first computer architecture developed by John
von Neumann3, consisted of a shared memory for data and programs and a central
processing unit which was able to execute instructions from a memorised program
(Piepmeyer, 2010, p. 4). Naturally, computer programs were constructed on top of
this architecture as sequences of instructions which are processed one after another.
This approach was very close to Turing’s original concept. In the Von Neumann ar-
chitecture both data and instructions were “reduced” down to the very same machine
code and transferred to and from the central processing unit in order to be subse-
quently used in combined calculations. The results were put back to the memory at
finalisation of the respective program steps. A computer program running on this
architecture consists of a defined fetch-execute cycle according to Sebesta (2012, p. 19),
and relies on saving interim results during program execution and hence needs in-
termediate variable assignments (and additional memory). Repetitions in a program

2The Turing Machine Concept: http://mathworld.wolfram.com/TuringMachine.html
3The von Neumann architecture of computer systems. See: http://www.csupomona.edu/

~hnriley/www/VonN.html
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code were realised as iterative loops utilizing subsequent memory cells rather than
recursion, since it was more intuitive from the architectural point of view (Piepmeyer,
2010, p. 5).

This clearly contradicts the ideas of Church and the lambda calculus, where no al-
gorithm in his formalism relied on temporary variables and self-applicable functions
built up the basement of his computation model. A few scientists recognised this
problem during the fast evolution of computer systems in the fifties of the 20th cen-
tury; the quick elaboration of this imperative programming style tremendously in-
creased the traffic between memory and central processing unit and John Backus4

named this effect two decades later the “Von Neumann bottleneck” as a general prob-
lem of conventional programming languages in Backus (1978, p. 615). The focus of
software development and language design went in the direction of expressing how
to do a certain task in terms of execution steps and machine states rather than build-
ing up foundations to abstract the hardware and provide possibilities to define algo-
rithms more pragmatically with mathematical expressions (Harrison, 1997, p. 3).

In fact there were some practical counter-measures in the evolution of programming
languages to overcome this close relation and strict dependency of software devel-
opment to its underlying hardware architecture, especially with the introduction of
the List Processing Language (LISP) by John McCarthy in 1958. LISP brought a com-
pletely new way of creating programs by introducing and interpreter in order to be
able to define programs with semantics similar to the lambda calculus (Lippe, 2009,
p. 108). The programming language merely consisted of atoms and lists as so-called
S-expressions for both data and programs, where atoms defined immutable values
and lists represented (data-) abstractions or (function-) applications, as described in
Sebesta (2012, p. 677). The most important aspect of LISP was though that it could
extend the lambda calculus in order to effectively write recursions without the Y-
combinator, by assigning a name to the respective function (see: McCarthy, 1960,
p. 12). This so-called applicative style of programming was the first step in many suces-
sive attempts to avoid states and local variables for the sake of computing efficiency
by taking full advantage of Church’s achievements with his calculus.

It is important to be said at this point that LISP was later extended with imperative
features such as loops (Harrison, 1997, p. 24). Nevertheless, there were successful
implementations of pure functional languages where all imperative constructs were
intentionally omitted such as it is the case with Haskell. This group of languages pro-
vides a practical implementation of the lambda calculus with its different reduction
strategies (Sabry, 1998, p. 13). The main idea of pure applicative or functional pro-
gramming is to define a stand-alone program as a single function which is combined
with other functions and where there is no semantical difference between data and
program logic. (Piepmeyer, 2010, p. 6). As a result of this functional encapsulation

4John Backus, developer of the Fortran Programming language. See: http://www.thocp.net/
biographies/backus_john.htm
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there is one feature which can only be provided by this type of programming lan-
guages according to Hudak (1989, p. 362), the referential tansparency. The structure of
pure functional programs does not allow different results for the same input depend-
ing on when the program is called. In functional languages there are no assignment
statements, every variable in the program is immutable (Hughes, 1989, p. 2). This fact
automatically removes side-effects which may occur in imperative languages where
variables can be changed outside of the scope of a particular function or procedure.

One must note that in both imperative and applicative cases the intermediate pro-
gramming language is still translated to machine code by its compiler complying
with the Von Neumann architecture since the hardware didn’t change dramatically in
its conception over the years. It is mentioned in Backus (1978, p. 639) that due to
the popular usage of imperative style in programming, there was also not much free-
dom in principle hardware design. Nevertheless, the discourage of mutable state and
the focus on the evaluation and reduction of expressions (e.g. combinations of func-
tions and immutable data) before execution makes it possible to write more efficiently
structured and fail-proof code. The modular design of functional programs favours
concurrency, pure functional expressions are thread-safe, and each component of a
composed function can be checked for its correctness based on mathematical prop-
erties (Backus, 1978, p. 617). This functional approach has gained more momentum
in recent years since most of the computers today have more CPUs available simul-
taneously. Compiler for functional languages can efficiently evaluate program code
in order to create parallel running threads. The underlying hardware is capable of
distributing them automatically at runtime and the “Von Neumann bottleneck” can
be avoided more effectively than in the past attempts of functional programming.

2.3. Expressions and Types

In accordance to the definitions of expressions in lambda calculus, functions in func-
tional programming are always treated as first-class values. This means that they
have three distinct features: They can be assigned to (or encapsulated in) data struc-
tures, applied as arguments to functions or be returned from enclosing functions (Bird
& Wadler, 1988, p. 4). These features form so-called higher-order functions which are
treated completely the same as values and can also be defined as anonymous func-
tion abstractions similar to the syntax in lambda calculus (Wampler, 2011, p. 12). With
these approaches every function can be used as an abstraction of one single parame-
ter. In order to provide multi-parameter functions one can implement currying, which
has also an advantage in providing a certain degree of modularity in program code
according to Hudak (1989, p. 382).
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An example of an higher-order function using currying in Haskell is given by Lipovača
(2011, p. 60) as follows:

multThreeInt :: Int→ Int→ Int→ Int

multThreeInt a b c = a ∗ b ∗ c

The function multThreeInt in principle takes one parameter from the type Int and
returns a so-called “partially applied function” in the form Int → Int → Int, there-
fore enclosing a follow-up function. As one can see this combination mechanism
for functions is very powerful and adds more abstraction to the program logic as
opposed to imperative languages. Note that currying is a feature which can only
be provided by functional languages since imperative procedures in general are not
able to implement self-applicable functions (Petricek & Skeet, 2010, p. 140). A com-
mon built-in higher-order function in modern functional programming languages is
map which applies a function to all elements of an appropriate data structure hence
ommitting imperative loops. This function in the context of Haskell is described in
Lipovača (2011, pp. 66) together with other practical examples using currying. The
second combination mechanism frequently used in Haskell and similar languages is
the functional composition. Consider two functions f and g where the output of f goes
straight into g. In imperative programming languages one would usually save an
intermediate result. In functional programming there is a special operator circum-
venting this memory allocation and synchronising the two functions. It is written
in the form of f.g which translates to g(f input) according to Hughes (1989, pp. 8).
Another elegant feature of functional programming languages in general is pattern-
matching which removes the need of if − then− else control structures. To round-up
the basic capabilties of expressions pattern-matching is shown by a basic example of a
recursive function in Haskell, taken from Thompson (2000, p. 60):

factFun :: Int→ Int

factFun 0 = 1

factFun n = n ∗ factFun(n− 1)

As one can see here, the function factFun matches a basic case where the input n is
0, otherwise the recursive version is called. This style of recursion can only work be-
cause there is a starting or more precisely also a termination condition provided with
the first case. This construct represents a conditional expression according to Sebesta
(2012, p. 708). This function should give a first glimpse on how programs are typically
designed in functional programming by omitting most of the well-known imperative
control structures. The so-called equational reasoning of functions is playing the fore-
most role in considerations about the design of data structures in modern functional
languages according to Cousineau and Mauny (1998, p. 92).

16



2. Elements of Functional Programming

2.3.1. Primitive Types

One distinguishing feature of functional programming, the specific treatment of prim-
itive data types as they were already used in the previous examples with Int or func-
tion types with →, were not directly inherited from lambda-calculus. There were
some preliminary attempts in combinatory logic to add type features of set theory
to lambda calculus as described in Harrison (1997, p- 38) but all data types men-
tioned here evolved independently in the beginning. What was in fact demanded in
all programming languages, starting from the first implementations, was a mecha-
nism to define collections of “similar typed” values in which the same functions are
allowed to operate on. In computational theory there are generally two types of data,
the primitive or basic data types and the derived or composite data types (Bird &
Wadler, 1988, p. 7). According to Hudak (1989, p. 377) types in functional program-
ming languages are first-class citizens which basicly means that types are treated the
same as a value and every expression must have reference to a particular type. In
general, functional as well as imperative programming languages frequently use the
following primitive data types: integers, booleans and characters. All these primitive
data types characterize a set of particular values in every programming language but
despite of being traditionally only bound to a value to avoid errors during program
execution, a type can be also used and processed as independent element in func-
tional programming languages (Pepper & Hofstedt, 2006, p. 111). Furthermore, also
functions and patterns explicitly represent a particular composite type in functional
programming languages according to Rabhi and Lapalme (1999, p. 18); the Haskell
function factFun for example is representing a function type from Int to Int and
the parameters are implicitly matched against a simple pattern involving the integer
value 0.

2.3.2. Polymorphism

The before mentioned higher-order function map also has, among similarily designed
procedures in functional programming, another property which is justifing this sep-
arate handling of types and values: polymorphism. In case of map this means that it
has implemented a type variable in it’s defintion which provides the possibility to use
this function on any type given as a parameter to the processed data structure at it’s
execution (Thompson, 2000, p. 87). It is important to mention at this point that in
both primitive and composite data types there is only one reference to a distinct set
of values with their predefined ranges having a particular minimum and maximum
(Lippe, 2009, p. 59). Nevertheless these types can be further composed into abstract
data types which do not exactly specify their mapping into sets and ranges of specific
concrete data types by intention. Separate handling of types and values is of particu-
lar advantage here because abstract data types are able to hold different primitive or
composite types with polymorphism depending on their parametrization which will
be shown in section 2.5 in more detail.
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It is also important to note that there are different systems existing which define how
and when types must be provided for a particular value. The most important dis-
tinction lies in the way how a type can be assigned to a value. In static type systems
every value is related to a particular type permanently which cannot be changed af-
terwards. In dynamic type systems the type can change during program execution
(Piepmeyer, 2010, p. 21). Type systems can additionally be distinguished in whether
they implicitly or explicitly provide type declarations. Haskell for example is stat-
ically typed, where one can provide a type for an expression, otherwise the type is
detected implicitly at compile time (O’Sullivan, Goerzen, & Stewart, 2009, p. 19). This
feature of programming languages is called type inference and it implies a clever type-
system where every expression can be deduced to one particular type with respective
rules comparable with the reduction strategies of lambda calculus (Bird & Wadler,
1988, p. 44). As one can clearly see here, static implicit type systems give a lot of
work usually done by the programmer in the hand of the compiler which in the end
completely removes type checks at runtime and prevents type errors automatically at
compile time.

2.4. Evaluation Strategies

Besides of higher-order functions, functional programming provides another distinct
feature which makes the designed software more structured and modular: non-strict
evaluation. As already briefly mentioned in section 2.1.2 there are two basic evalu-
ation strategies implemented in lambda calculus, the normal-order reduction and the
applicative-order reduction which differ in the way and order how they evaluate ex-
pressions.

2.4.1. Call-By-Name

In order to understand these features in real-word programming one most look at the
functional composition mechanism which was described before in section 2.3. It is a
good example to show the motivation of non-strict evaluation; the practical realisa-
tion of normal-order reduction in programming languages. The function f which is
applied to function g in g(f input) is only evaluated here if the the input produced
by f is actally used in g. This means that the evaluation is diverted as long as the
results from f are not needed by g and are possibly completely dismissed at compile
time if there is nothing “needed” from f by g (Hughes, 1989, p. 9). The computational
advantage of this procedure is that in such a functional composition enables the com-
piler to automatically detect if functions are depending on each other and hence is
able to decide on its own which parts of the program can be run in parallel. Hudak
(1989, p. 383) mentions in this respect that normal-order reduction is inefficient if it is
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naively implemented in real-world programming although it’s considered optimal in
lambda calculus because of its capability to handle recursions with the Y-combinator.
There is an example given in this paper where one can clearly see the main problem:
Repeated expressions are evaluated separately, there is no possibility in the reduction
strategy to detect equal expressions so that the computation is made only once. The
functions are non-strict in the sense that reduction is made on demand with call-by-
name evaluation but all expressions are evaluated separately. In order to overcome
this inefficient evaluation strategy an extension of call-by-name was introducted ac-
cording to Paulson (1996, p. 11): lazy evaluation or call-by-need. Haskell, as a pure
functional language implements lazy evaluation (Thompson, 2000, p. 337).

The difference between these two approaches using non-strict functions is that the
extended version is building up the dependency plan and reduction order of expres-
sions not as usual in a tree-like structure. As a consequence of the requirement to
avoid the evaluation of expressions occuring more than once a graph structure is
used instead. When the compiler is reducing expressions with call-by-need it only
cross-links to equal expressions with pointers and the resulting shared graph nodes
are only evaluated once (Pepper & Hofstedt, 2006, p. 34). It is implicitly mentioned
in Paulson (1996, p. 41) that this evaluation strategy is applicable but not efficient in
strict functions when bound variables are occuring inside the function abstractions.
A graph reduction strategy would copy the whole function here without evaluating
these variables before. Furthermore, the evaluation order of non-strict functions is
always left-associative like in the example above which might not be ideal in imper-
ative flavoured functional languages such as LISP. LISP is utilizing strict functions
instead according to Knight (1990, p. 105).

2.4.2. Call-By-Value

In contrast to this variations of call-by-name, the applicative-order reduction strat-
egy introduced with lambda calculus utilizes strict functions more efficiently because
each argument of a function is evaluated right-associative before the actual function
body (Petricek & Skeet, 2010, p. 303). This means that expressions are considered
undefined as a whole and are not evaluated as long as their arguments are not fully
defined and evaluated (Pepper & Hofstedt, 2006, p. 32). As one can imagine this ap-
proach is taken by most imperative programming languages because side-effects and
mutable data are practically not allowing any other reduction strategy and therefore
dependencies cannot be resolved automatically by the compiler. On the other hand,
applicative-order reduction can not deal with conditional expressions and recursions as
they are used in pure functional languages because evaluation would possibly not
terminate according to Michaelson (1988, p. 56). One big drawback of the powerful
call-by-need mechanism in pure functional programming is that one cannot influence
programmatically when an evaluation takes places. This means that one has most
probably to deal with unevaluated so-called closures in more complex programs; func-
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tion abstractions which are not reduced and evaluated as long they are not applied to
another function (Hudak, 1989, p. 385). A closure in LISP but also in Haskell can in-
habit other function definitions which are either returned by or only used within the
function scope. A lazy evaluation strategy would not be able to detect these nested
functions and their dependencies so they will never be evaluated independently. It
can clearly be seen here that the efficiency of call-by-need is far worse than call-by-name
when applied to programming environments where there are side-effects and argu-
ments must explicitly be evaluated before their application. Nevertheless, there are
advantages utilizing lazy evaluation in pure functional programming languages when
it comes to the point of data abstraction and representation

2.5. Data Structures

As already briefly mentioned in section 2.3, besides of primitive types there are also
composite types in functional languages as well as they are existing in imperative lan-
guages. Usually these composite types form a so-called data structure according to
(Lippe, 2009, p. 59) if they are defined over a specific combination of primitive data
types. That means the main focus is on which data types are used but the semantics
for processing the encapsulated data are basically provided by the consisting primi-
tive types themselfes.

2.5.1. Tuples

The basic form of combination of two distinct primitive data types in functional pro-
gramming is the tuple according to Bird and Wadler (1988, p. 32). From the mathe-
matical point of view one can see this construct as a cartesian product of two types
and there is only one operation predefined by the data type itself: a selector to ac-
cess each element (Cousineau & Mauny, 1998, p. 20). All other operations and re-
lations between the actually used primitive types are free in the sense that it is up
to the implementation and hence depending on where they are processed, how to
interprete them. Note that tuples have a fixed number of elements in their defini-
tion as well as they have a fixed type which is written in Haskell syntax as follows:
type item = (String, Int) (Thompson, 2000, p. 71). This definition also implies that a
tuple as a composite type must implement polymorphism on it’s parameters in Haskell
in order to maintain the freedom of choice with all available data types. A typical use
case of tuples as a return type of a function is called tupling which is illustrated in
Rabhi and Lapalme (1999, p. 17) with a polynomial root function returning two inte-
gers.
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2.5.2. Lists

A practical extension of the tuple is the list where one can have a variable length of
items in an ordered sequence. This sequence has one particular type and therefore a
list is considered as a linear data structure (Rabhi & Lapalme, 1999, p. 18). In contrast
to the tuple this data structure is providing more operations on itself independently
of the types provided by it’s final declaration. It is mentioned in Thompson (2000,
p. 92) that type String = [Char] for example is the definition of string type in Haskell
which means that a string is handled like a list of characters. The available operations
include the polymorphic map function which was described in the context of function
compositions in section 2.3 but also more simpler generic operations such as reduce
which i.e. can be used to implement length returning the number of elements in a list.
Another representative example of a higher-order function for lists is the cons oper-
ator, a constructor function which adds one element to a list (Cousineau & Mauny,
1998, p. 60).

A typical pattern used with lists in functional programming is provided by the head-
and tail-argument which is written in the form x : xs in Haskell. This pattern can be
found in all implementations of higher-order functions for lists since it enables the
use of recursion when iterating over all elements according to O’Sullivan et al. (2009,
p. 34). Practical examples of these functions as well as other widely used operations
including filter or fold are described more detailed in Rabhi and Lapalme (1999,
chap. 2.5). Nevertheless, a common filter possiblity on lists in Haskell must be men-
tioned explicitely here: list comprehensions. Lipovača (2011, p. 15) gives a simple, yet
powerful example of this type of expression with [x ∗ 2 | x <- [1..10], x ∗ 2 >= 12]. This
statement yields a list as follows: [12, 14, 16, 20]. The beginning and ending brackets
define that the result will be a list. The first part of the comprehension divided by
the pipeline symbol denotes a simple function x ∗ 2 and the intervall [1..10] to whose
values the function is applied to. The second part additionally provides a condition
so only elements yielding a result greater than 12 are saved in the new list.

In contrast to strict evaluation languages such as LISP, lazy evaluation languages like
Haskell are able to maintain a list similar to it’s mathematical counterpart, the se-
quence. With this property a list can for example be declared as [1..] which basically
constructs a list of all natural numbers. The respective entries are then evaluated
only on demand when they are actually accessed by the program (Bird & Wadler,
1988, p. 48). Laziness also provides the possibility of composing functions more effi-
ciently on recursive data structures as with strict evaluation (Rabhi & Lapalme, 1999,
p. 72). Since every data structure is immutable and persistant in functional languages
every iteration made with general recursion is creating an intermediate result. This
procedure usually consumes linear stack space with strict evaluation depending on
the recursion depth, while loops in imperative programming languages would con-
sume only constant stack space independently of the iteration steps (O’Sullivan et
al., 2009, p. 87). When using lazy evaluation in conjunction with the previously de-
fined recursion and the tail-argument, the intermediate result can be removed from
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the stack space immediately after it is further processed in the data flow and the pro-
gram can be run with using only constant stack space too. The exact behaviour of
the evaluation in both cases is compared by example in Cousineau and Mauny (1998,
pp. 83). It is important to note that in order to work properly in constant stack space,
a so-called tail-recursive function must embed a helper function whose stack space is
re-used in every iteration. An appropriate tail-recursive version of factFun used in
section 2.3 would look as follows in Haskell5:

factFunTail :: Int→ Int

factFunTail n = factFunAux n 1 where

factFunAux 0 accu = accu

factFunAux n accu = factFunAux(n− 1)(n ∗ acc)

In this example factFunAux is representing the helper function which is the last ac-
tion executed by factFunTail. Furthermore accu is a second parameter given to this
function which is saving the intermediate results in every iteration. Again pattern
matching is used to declare a terminating condition. These provided cases clearly
show why it is important to take caution in operations on data structures with func-
tional languages and their distinct capabilities. Okasaki (1999, p. 1) gives an advice
in this regard in his introduction to purely functional data structures: “The inappro-
priate use of complex types in functional languages might influence the asymptotic
behaviour of programs and lead to increased memory allocation which dissolve the
gained advantages of modularity provided by their purely functional concepts”.

2.5.3. Trees

As opposed to lists, trees are a hierachical, non-linear data structure because an ele-
ment in the tree can have one or more successors. Generally consisting of nodes and
branches connecting nodes with each other, a tree is also a recursive and polymor-
phic type by definition (Pepper & Hofstedt, 2006, p. 130). It can be build up starting
at one distinct root element traversing through its nodes and sub-nodes down to leafs,
which are nodes without further branches. A node itself can hold any other known
data type in the used programming language and with it’s sub-nodes it can be con-
sidered as a tree itself. The longest path from the root element to the outermost leaf
is called depth of a tree according to Cousineau and Mauny (1998, p. 136). Trees have
the same capabilities as lists with regard to application of composable higher-order
functions since they can be deconstructed in practically unrelated paths. These can
be processed in parallel and hence create intermediate results on purpose (Rabhi &
Lapalme, 1999, p. 78). It’s important to note that these intermediate results can be
also avoided similarily as with lists. Again, iteration is done with a recursive helper
function but this time this function is called twice in each recursive step creating a

5Based on instructions in: http://scienceblogs.com/goodmath/2006/12/20/tail-

recursion-iteration-in-ha-1/
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cascading tree-recursion instead of a flat tail-recursion as it was shown with the list
type (Pepper & Hofstedt, 2006, pp. 41).

The very basic operations needed in trees are its constructor functions node and leaf
which are composed further into patterns creating specific tree manipulation func-
tions (Fokker, 1995, pp. 57). These manipulation functions are divided into single
operations, such as add or remove for specific nodes and global operations such as
depth, size or in more general traverse which iterate through the whole tree (Rabhi
& Lapalme, 1999, p. 39). Generally trees perform better in searching and sorting al-
gorithms as lists if they are implemented as a so-called search-tree. A search-tree is
usually represented by a abstract data structure - the binary tree - where each node
only consists of two sub-nodes at maximum (Fokker, 1995, pp. 59). With this struc-
ture one can maintain a specific order of tree nodes, e.g. the left sub-tree contains
smaller elements and the right sub-tree contains greater elements than the respective
root node. This opens more possibilities with regard to the optimisation of asymptotic
behaviour because algorithms can “focus” on a specific sub-tree, when searching for a
specific value recursively. It only needs to “decide” at each node if the searched value
is considered greater or smaller than the value related to the actual node (Okasaki,
1999, p. 12). However this type of tree can only be polymorphic with types who have
an ordinal relation but they can be searched much faster because they are arithmeti-
cally balanced according to Bird and Wadler (1988, p. 236).

2.5.4. Arrays

Another frequently used composite data type in both imperative and functional pro-
gramming is the array which is also an ordered sequence and linear like the list ac-
cording to Rabhi and Lapalme (1999, p. 40). The only difference between these two
data structures from the technical point of view is that array elements are explicitly
indexed and have a known size at compile time. This has asymptotic advantages
in their implemented access algorithms since it needs only constant time to access
one element via the index (O’Sullivan et al., 2009, p. 271). Nevertheless in functional
languages the array is handled different as it’s imperative counterpart. The original
design of an array is strictly tied to the Von Neumann architecture since the indexed
elements are intended to be located in subsequent memory cells so that there is no
linking between data cells needed (Pepper & Hofstedt, 2006, p. 287). The updates
on the data structure are usually destructive and don’t need additional memory cells
but this is not possible with immutable data structures in pure functional languages;
a copy of the array is created each time an element is updated, the data structure is
said to be persistent or multi-threaded (Rabhi & Lapalme, 1999, p. 82). Although be-
ing memory inefficient, arrays can also be composed like lists, they have practically
the same higher-order functions on sequences available such as map and they can
be also lazy with regard to initialisation of particular elements (Pepper & Hofstedt,
2006, p. 26). Each cell of an array is accessible by it’s fixed index independently if the

23



2. Elements of Functional Programming

cell is actually evaluated and initialised with a value or not (O’Sullivan et al., 2009,
p. 272). However, in order to achieve single-threaded arrays through functional lan-
guage constructs there is a need for advanced higher-order functions which enable
the creation of data structures where only one version exists at a specific time. It will
be shown in section 2.6 that at least some complex data structures can be constructed
solely by function applications.

2.5.5. Abstract Data Types

It is not explicitly mentioned throughout the literature but it turns out that the more
operations are defined on a data structure and the less it is focused on the partic-
ular data types used the more it is considered as an abstract data type. This vague
argument is nevertheless supported by Lippe (2009, p. 60) with the statemant that the
distinction between a data structure and an abstract data type cannot be drawn easily.
However with abstract data types one is focusing completely on the operations made
within a predefined domain without being strictly tied to groups of primitive or com-
posite types which can be applied to them (Bird & Wadler, 1988, p. 221). Rabhi and
Lapalme (1999, p. 86) also states that abstract data types are basically definitions of
algebras not visible to the user which can have several different concrete implemen-
tations. It is not surprising that abstract types can in fact be practically constructed
by using the before mentioned concrete data structures such as lists, trees and arrays
and therefore provide the same modularity as those. Furthermore abstract operations
can be adapted to work in the native environments of the chosen concrete data struc-
tures. In Haskell for example, an abstract data type ist defined by a module code block
which defines different operations for the concrete types related to this abstract type
according to Lipovača (2011, p. 105). It can be seen as some kind of data encapsula-
tion since the module only provides a single set of interfacing functions to the outside
world but the concrete implementation is hidden.

All these complex data types can be efficient in algorithms with regard to their spe-
cific asymptotic behaviour if one keeps in mind which operations will be made on
them. There are a lot of different applications existing especially with recursive types
such as trees as it was already shown to some extend with the search-tree. Neverthe-
less, there is a even more general abstract type defined in functional programming
languages named set which is having the same properties like it’s mathematical coun-
terpart: It is forming an unordered collection of elements occuring only once which
all have the same data type. There are also a variety of applications existing with lists
which do not allow duplicates according to Thompson (2000, p. 321) It completely
depends on which algorithmic conditions one needs when choosing a concrete im-
plementation but all types of sets contain higher-order functions like union, intersect
or difference which are well known from set theory (Cousineau & Mauny, 1998,
pp. 66).
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With the abstract definition of sets there is the possibility to implement a map using
the advantages of a concrete binary-tree data structure representation for example. In
this specific case a key is mapped to one specific value but only the key needs to be
unique. With a binary-tree there is the possibility to achieve sorted key-value pairs,
if the key is from an ordinal data type. Nevertheless, there are simpler list- and array
implementations existing not necessarily having any order which are illustrated in
Rabhi and Lapalme (1999, pp. 98). A widely used example in programming is the
associative array which is a list of key-value tuples. It is also stated in this book that
it depends on the purpose of a map and it’s requirements with regard to asymptotic
behaviour in search algorithms which conrete data structure should be used. At last
Pepper and Hofstedt (2006, p. 324) notes that a map, like an array can also be con-
structed as variations of functions whose fundamentals will be explained in the next
section. More detailed descriptions of algorithms designed as abstract data types
as well as more precise efficiency measures can be found in Cousineau and Mauny
(1998, p. 157-230), Rabhi and Lapalme (1999, p. 114-154), Okasaki (1999, p. 171-184)
and Pepper and Hofstedt (2006, p. 287-358).

2.6. Advanced Functional Features

So far this thesis has described features of pure functional programming languages
which in total rely on two fundamental aspects: immutability of data structures and
non-strictness of functions. There was already one example shown where these as-
pects are not efficient as their imperative counterparts with the modification of al-
ready defined data structures. Nevertheless it was at least possible to keep saving
intermediate results at a minimum and as efficient as possible with tail-recursion but
still there is the need of reallocating the program stack in each iteration. This is not
desireable if compared to imperative, destructive updates but it is obviously needed
if one keeps in mind the referential transparency of functional languages where the flow
of data must be declared explicitly and no side-effects are existing (Rabhi & Lapalme,
1999, p. 202). Besides of that declarative style it is sometimes needed to maintain
some global state in a program which can be changed by independent parts of the
software. Moreover copying big data structures for the sake of providing modular
and fail-safe programs might not be ideal in some applications as one can imagine.
So how do pure functional languages maintain such imperative aspects as mutable
data structures?

So far, one has only seen higher-order functions which are realizing parameter-passing
style. This means that we have the intermediate result explicitly “carried around”
in the recursive iteration (Sabry, 1998, p. 16). However, there are two more ab-
stracted possibilities existing in pure functional programming according to Hudak
(1989, p. 393) which build upon those functions as they were discovered in the pre-
vious section the so-called effect-passing style and the continuation-passing style. These
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two possibilities were recognised as being equally powerful in their capabilities in
the past and they were combined to one fundamental unit of pure functional pro-
gramming which is called a monad. Monads are a mathematical construct coming
from category theory which are defined in this domain on the basis of so-called func-
tors (O’Sullivan et al., 2009, p. 354). A functor is nothing more than an abstract and
polymorphic data type which represents a mapping from a certain category - a class
of types it can be applied to, to another category - a class of types which is returned
by this functor (Pepper & Hofstedt, 2006, pp. 218). Type classes in that respect can
be seen as a group of similar types to which specific functions can be applied to. A
built-in type class in Haskell which was implicitly used in previous sections is Ord
which represents all types having an ordered structure according to Thompson (2000,
p. 220).

The principle “mapping” capabilities of a functor already sound familiar if one looks
back to the definition of the higher-order function map. In fact the functor, being a
type class itself, inhabits a function fmap according to Pepper and Hofstedt (2006,
pp. 219) which generalizes the concept of the map function. The difference here is
that fmap does not focus on a specific type but provides the possibility to achieve
the mapping with an implicit type constructor as it is shown by example in Lipo-
vača (2011, p.146) where a concrete implementation for a specific type is completely
ommited. In addition to that a functor usually provides a second operation in its
definition which is enabling the combination of functor results. It is named join in
Haskell and can be compared to a “reduce” operation on lists (O’Sullivan et al., 2009,
p. 354). Note that monads in Haskell, compared to their originating functors, have
a slightly different naming of their contained operations but practically they are do-
ing the same. However in this thesis it is more important to understand, that a vast
amount of day-to-day operations in functional programming is implemented through
these generic concepts which will be later proved in the practical chapters. Occasion-
ally monads open the door to more capabilities which are not possible in the pure
functional domain as described so far: the maintenance of state and the handling of
I/O operations. The first paradigm which is realised by monads is the effect passing
style (EPS). As the name already indicates it leverages the possibilities of non-strict
evaluation to create side-effects. This reduction strategy can be used to implement
I/O streams as lists with pure functional languages which are acting as an practi-
cally infinite buffer. An extensive example using an abstract data type with already
familiar request/response features forming an coupled transaction is provided in Hu-
dak (1989, p. 395). This data type also incorporates pattern-matching cases to define
whether a transaction was successful or not.

The second paradigm, continuation passing style (CPS) brings one back to the functional
arrays which were indicated in the previous section. The idea here is to handle arrays
just as an abstract data type in the form of a monad which can continuously call on its
applied functions. This procedure omits the creation of multiple threads when mod-
ifing elements of the array since there is only one instance of the monad existing at
a time (Wadler, 1995, pp. 15). To achieve this, a special monad integrates some kind
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of internal state which is passed around among it’s defined higher-order functions
according to Rabhi and Lapalme (1999, p. 203). The basic continuation which was
implemented with tail-recursion before, is captured within the monadic structure and
only a dedicated beginning condition and the desired transformation rule is supplied
by the user without any indication of a specific type6. The reason why this allows only
single-threaded data structure lies in the way the compiler handles monads according
to Pepper and Hofstedt (2006, p. 259). It is indicated here that the compiler recognizes
monads and treats them as single entity similar to a single-threaded arrays in imper-
ative languages. Moreover monads also allow non-determinism with both paradigms
in the form of function applications which might not return a result at all like it was
indicated in the case of transaction. Finally the monadic array also allows an “excep-
tion” condition to occur when e.g. map is used on an empty array. The notion of this
monadic structure called Maybe is given in detail in Lipovača (2011, p. 147).

There are a few more applications of monads in pure functional languages such as
Haskell. Nevertheless in the frame of this thesis the mentioning of traditionally im-
perative features which are translated into a more abstract construct is limited to very
basic cases on purpose. It is important to see with these examples that pure functional
programming can inhabit all advantages of imperative languages making at least as
powerful in the end together with their specific expressiveness. However, there is the
need to think deeply on which algorithms are implemented with pure functional lan-
guages. The elegance of providing modular and fail-proof code can only have com-
putational advantages when applied to the appropriate data structures. It was shown
that lambda calculus although having powerful language formalisms, is not efficient
when naively transformed to functional programming. Nonetheless there are some
features described here originally coming from lambda calculus which will be found
again in much more advanced programming languages as it will be shown in the
upcoming chapters. Those features are enabling asynchronous messaging features
and parallel programming mechanisms as well as purely functional data structures
and even more useful higher-order functions. Especially the increasing need of par-
allelised software for multicore- and cloud computing is making functional aspects
more and more popular in non-functional programming languages. In addition to
that advanced type systems based on the definitions elaborated during the evolution
of functional languages described so far will be able to process external data formats
and interprete related domain specific languages (DSLs) more efficiently which is an
indispensible feature in today’s programming.

6Note, this is only the case in Haskell, since it is a strictly typed language with implicit naming.
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Programming

In functional programming languages as it was proved in the previous chapter there
is the focus on dividing a problem into smaller parts: functions - which are self-
contained and have a particular task assigned to. Every problem is seen as an al-
gorithm, a combination of different independent functionalities which can be used in
a variety of contexts. In parallel to the elaboration of functional and imperative pro-
gramming languages there was an evolution of another software paradigm: object-
oriented programming. It was identified as described in Wotawa and Bloem (2003,
p. 116) that in order to overcome the fast increase of complexity in software there was
the need of an organisational unit in programming which keeps things abstracted to
a certain degree for the purpose of reuseability and modularity. Object-oriented pro-
gramming languages basically deal with objects having particular relationships with
each other. A definition of an object is called a class which can be instantiated as often
as it’s needed and therefore is representing a set of objects from the same type. At the
beginning, object-based functionality was simply integrated in imperative program-
ming languages as “rules” of handling particular types of data. According to Marick
(2012, p. 33) eventually these rules where deeply hidden by the language itself - the
compilers took more and more work away from the programmer.

A fundamental difference between functional and object-oriented programming is
that in functional languages one focuses on the implementation of a generalised con-
structor function which makes a distinction of a specific data type applied to it by it’s
internal implementation. In contrast to that in object-oriented languages the intention
is to have each object supplied with an own implementation of operations for a spe-
cific type. In the very first elaborations of object-oriented languages such as Smalltalk
this resulted in syntax and semantics where everything is treated as object which are
able to interact among each other with a specific messaging framework (Sebesta, 2012,
p. 85). One will see the difference of object-oriented and functional programming at a
later stage with the principle of inheritance and subtype polymorphism between re-
lated classes as opposed to higher-order combinator functions between related types
together with parametric polymorphism in functional programming (Smaragdakis
& McNamara, 2000, p. 2). Altogther it seems that object-oriented programmming is
nothing more than a generalisation of abstract data types as they were described in
previous sections according to Sebesta (2012, p.525). This assumption will be proved
in the upcoming sections too.
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3.1. The Scala Programming Language

Scala, whose name is derived from “scalable language”, is a rather new concept of
a programming language which was introduced first in the year 2001 by Martin
Odersky and his team at the École polytechnique fédérale de Lausanne. Generally
speaking, Scala can be seen as an elaboration of the object-oriented programming
language Java since it is running on Java Virtual Machine (JVM) and is able to exploit
and interoperate with all existing Java-APIs. It grew out of a prototype of a func-
tional programming language already based on Java called Pizza. This was the first
attempt to get the most out of the statically typed Java compiler and it’s mature op-
timisation model for elaboration of functional features such as pattern matching or
first-class functions. The achievements in this research project partially evolved into
Java generics, the application of parametric polymorphism to classes (Pollak, 2009,
p. 5).

The plans with Scala were slightly different. The goal was to develop a hybrid lan-
guage based on a strong object-oriented background combined with a deep under-
standing of the advantages of functional programming. The result tackled the most
significant parts of both worlds and they were made practically interchangeable as it
will be shown in the upcoming sections. The main reason for this fusion is clearly de-
scribed in (Wright, 2009): Syntactic tricks like the continuation passing style or closures
were often needed when building especially robust and fail-proof object-oriented
code but it was very difficult to apply this paradigms to the available languages at
the time. Instead complex design patterns for object-oriented languages were elabo-
rated to help the programmers construct the right architecture for their particular use
cases.

While functional programming remained more an academic discipline during the
decades there was nevertheless one successful application in the telecommunication
industry with Erlang in the time, developed by Ericsson1. Occasionally one of its
core concepts, a concurrent messaging framework based on so-called actors, can be
found again in the extended features of the Scala programming language (Wampler
& Payne, 2009, p. 16). The issues tackled with Erlang are of particular importance
for the reasoning about the significance of establishing an object-functional language
like Scala in todays programming. It is mentioned by Odersky, Spoon, and Venners
(2011, p. 53) that the Java community in particular was searching for new possibili-
ties to get away from threads which share mutable data and where synchronisation in
concurrent programs is achieved by complicated locking mechanisms. With regard
to scalability, Scala and it’s functional and object-oriented foundations made it possi-
ble to built up libraries capable of elaborating asynchronous threading models as an
alternative approach.

1Ericsson is a swedish telecommunication company, see also: http://www.ericsson.com/
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One of the very basic concepts enabling these capabilities in Scala is that everything
is represented as an object which can be treated the same like it’s pure object-oriented
relative. Even primitive types are objects. Furthermore functions are treated as first-
class objects which define them as versatile as their pure functional representation.
The strict hierachical type system of Scala is almost identically to Java, yet with some
significant differences. Scala has implemented type inference which means that every
object is referred to one specific type at compile time (Braun, 2010, p. 2). In addition
to that advanced abstract data types and immutable data structures add important
notions of functional programming in this regard. Although it seems that object-
oriented and functional programming is difficult to combine in the domain of Java
because of it’s tight relation to imperative features, Scala is balancing and support-
ing both concepts extensively and is widely recognised as a successful attempt by
the community according to Wampler and Payne (2009, p. 6). At this point it is as-
sumed that the reader is already familiar with the basic concepts of object-oriented
programming. All the traditional object-oriented and pure functional aspects will be
only shown as an application within an object-functional programming language in
the forthcoming sections.

3.1.1. Functions and Evaluation

According to the findings in chapter 2 evaluation strategies play a fundamental role in
programming in general. The way the compiler chooses to evaluate functions can be
of importance. The reduction steps which have to be undertaken in order to simplify
an expression down to a concrete value are a critical measure in complex operations.
Scala therefore implements both substitution models discovered in the course of func-
tional programming: call-by-name and call-by-value. Scala uses call-by-value by default,
the compiler immediately reduces an expression i.e. a simple function parameter
down to its value as soon it’s in encountered in the evaluation procedure. Therefore
each similar expression is only evaluated once as already elaborated in section 2.4.

Listing 3.1: A simple function definition in Scala

1 def manipulate(val x: Double, val y: => Int): Double = ←֓
{..}

Nevertheless, call-by-name is considered as equally important in Scala as shown in
Pollak (2009, p. 107) since it provides a useful on-demand evaluation. It is important
to note though that there are cases where only call-by-name will terminate but call-
by-value would fail. An explanatory case in Wampler and Payne (2009, p. 190) gives
a proof on this assumption with a custom loop structure implemented as a function-
applying function which would run infinitely with call-by-name evaluation. In the
example above, imagine y is another function which is typically reduced immedi-
ately because it’s another function parameter with call-by-value, independently if it’s
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needed or not. However, in this case the parameter declaration is written with an ar-
row which indicates the use of call-by-name. Whatever stands behind the parameter
y, it is not evaluated until it’s actually applied within the function body.

It can be also seen in this basic example of a function in Scala that parameters pro-
vide their specific type as a postfix separated by a colon as well as the return type of
the function after the brackets. Altough function applications in Scala are evaluated
similar to the β-reduction in lambda calculus there can be more than one parameter
applied to the function. Those are reduced from left to right on their own and in
course of further evaluation of the function body in the curly brackets then subse-
quently replaced by its arguments therein. On top of this rather imperative definition
of a function there is the possibility of nested function definitions within a block de-
limited by curly brackets in Scala, enabling closures as well as a special lexical scope
for variables and expressions (Loverdos & Syropoulos, 2010, p. 46). In addition to
functions, value definitions themselfes can have the same evaluation properties. One
can either define them with the def prefix as the function above which denotes it as
by-name or with the val similar to the parameters as by-value. Naturally def evalu-
ates only when the result is actually needed as opposed to val which is immediately
evaluated at it’s definition. In fact, the call-by-name strategy used by the value defi-
nition of y in the previous example could also be rewritten as def y:Int.

Note that value definitions prefixed with val are immutable and acting completely
the same as member variables in Java declared as final. In order to be able to up-
date a value after it’s definition it must be prefixed by var instead. Braun (2010, p. 28)
mentions in that respect that the immutable version of a value is perfectly fitting into
the functional paradigm of Scala and is sufficient for most applications therein. More-
over the immutability of variables used in functions makes them practically thread-
safe. Nevertheless a mutable value can be from advantage in a variety of common
software development situations, in particular when thinking about performance in
real-time applications with caching or buffering mechanisms.

It is not surprising that the Scala language exploits the principles of higher-order
functions to a great extend. Each function is treated the same as in functional pro-
gramming. Familiar constructs such as anonymous functions with function types as
well as function-applying and function-returning functions are flavouring the syntax
and semantics of Scala. An impressive example of currying, showing the potential of
first-class functions within Scala, is shown in Odersky (2011, p. 21). Currying is used
in this case to abstract functionality by introducing a common function which takes
another individual function as parameter. Either an anonymous function type or a
named function can be applied to it concretizing the combination algorithm. Loop
imitating procedures such as the tail-recursion can also be defined similar to as it was
shown with Haskell having the same properties with regard to stack space alloca-
tion. Moreover Scala, according to Piepmeyer (2010, p. 128) provides a possibility to
make an annotation to a tail-recursive function with @tailrec. This syntactical fea-
ture tells the compiler to explicitly check whether the function is really tail-recursive
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or not. As one must recall from the pure functional programming languages that
functions as they are treated in Scala are essentially named abstractions which can be
composed over higher-oder functions to create new abstractions. This feature is very
powerful when thinking about reusability.

3.1.2. Abstractions and Classes

Scala provides an interesting new way to deal with data as opposed to pure func-
tional programming because of it’s object-orientation. Besides of functions which
create and encapsulate primitive and complex data types there are more possibilities
with the usage of classes. A class defines a new complex type and implicitly a re-
spective constructor which is able to create objects of this particular type (Wotawa
& Bloem, 2003, p. 118). As it is common in object-oriented programming languages
one can create new instances of this class, called objects with the prefix new. Addi-
tionally as it is the case in Java, member variables as well as methods of a class can
be accessed from outside by the infix operator . except members which are declared
with the prefix annotation private. It is interesting to mention that the . oper-
ator is acting similar to the functional composition in Haskell described in section 2.3.
Nevertheless the class construction in Scala is slightly different to it’s underlying Java
framework which makes it more powerful with regard to flexibility by providing dif-
ferent ways to actually create objects. Besides of the general auxiliary constructors
denoted with def this(...)={..}, which are in this form also existing in Java
with a slightly different syntax there are other possibilities in Scala to provide param-
eters at class construction. In the example below there is one distinct example with
the class Response. A class in Scala can have constructor parameters which are part
of the class’ primary constructor besides of all statements written in the class’ body
(Horstmann, 2012, pp. 59).

In this case there are two parameters given at the class instantiation. One is initialising
a member variable (token) the other is just providing an temporary parameter which
can be only accessed inside the created object by default. Every member variable can
be directly used within the class without the keyword this as opposed to Java like
it is shown with def toXML in the example below.

Listing 3.2: Classes and subtyping in Scala

1 abstract class ResponseA {

val token: String

3 }

5 trait ResponseT {

val timeStamp: Date = new Date

7 def toXML: NodeSeq

}
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9

class Response(val token: String, hash: String)

11 extends ResponseA with ResponseT {

def this(val token: String) = this(token, md5(token))

13 def toXML = <time>{timeStamp.toString}</time>

}

The three basic elements of the example also show the general class hierarchy as it is
designed in Scala. Compared to Java one immediately sees a yet unkown annotation
trait but misses the well-known annotation interface. In fact a trait is similar to
an interface, it defines a type just like a class but compared to the interface a trait can
have member variables (Raychaudhuri, 2013, p. 70). Unlike the interface members in
traits can also be implemented not only declared with parameters and return types
as it is shown in the example above.

An abstract class on the other hand can be used just like in Java; one can declare
member variables and methods without concrete implementation and they are con-
cretisised through subclasses with the extends annotation. In contrast to the Java
counterpart abstract members or methods are implicitly defined as abstract by de-
fault but there can be a concrete implementation in the Scala version of an abstract
class as it can be seen by a simple example in Subramaniam (2009, p. 97). Neverthe-
less a concrete implementation can be refactored in the subclass like in e.g. Response
with the override prefix annotation. Altogether abstract classes provide yet another
possibility to assign a group of similar objects to one base class or supertype which has
similar advantages as type polymorphism as it was seen in pure functional program-
ming with Haskell

In fact an abstract class is exactly what was referred to an abstract type in pure func-
tional programming which can in Scala contain concrete definitions of functionality
as opposed to the pure object-oriented version hence making them “more” functional.
After these assumptions with regard to abstract classes and traits it is natural to ask
the question where the significant difference lies between those types. In fact the
only differentiation is that traits cannot have constructor parameters like classes but
abstract classes are able to have them (Pollak, 2009, p. 18). It is also mentioned in
Odersky et al. (2011, p. 275) that the keyword super used to access members of a
super class is statically bound in abstract classes and dynamically bound in traits which
means that the targeted member can change in implementation depending on the
order of inheritance of multiple related traits. Scala has also some syntactical fea-
tures which makes it more functional with regard to its notation. Any method with
a parameter defined in a class can be used as an infix operator itself (Wampler &
Payne, 2009, p. 168). The resulting syntax is rather similar to a function application in
lambda calculus. The hypothetical method def +(a: Response) implemented
in the class above for example could be used to implement an object-combinator for
two objects e.g. x and y from the type Response which can be then exploited with
the notation x + y, conceptually similar to numerical algebra.
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While Java is based on a single inheritance model Scala with its traits is providing
more flexibility with multiple inheritance with supporting the so-called mixin strat-
egy (Braun, 2010, p. 84). In accordance with the example given in this section, func-
tionality from traits can be “mixed” into classes in addition to extend with the with
annotation. A single inheritance is always made with the extend annotation inde-
pendently if the supertype is an abstract class or a trait but Scala classes can be ex-
tended by multiple with annotations, each providing concrete or abstract definitions
from another trait. Note that traits can also extend other traits and abstract classes
so there can be a complex hierarchy of traits in Scala each of them providing certain
functionality to their subclass. In Scala every class is a so-called reference type and is
inherited implicitly from the base type scala.AnyRef which in fact is a substitute
of it’s Java counterpart java.lang.Object (Suereth, 2012, p. 28). Similar to the
abstract data types in pure functional programming this base type has implemented
common functionality which are inherited to all subclasses, for example methods for
cloning or proving equality of objects.

In addition to that all primitive types like scala.Int are inherited implicitly from
the base type scala.AnyVal. Moreover in both cases these base types are again
inherited from the supertype scala.Any according to Odersky et al. (2004, p. 3). As
one can imagine this hierarchy has certain advantages when thinking about generic
functionalities which are common for a group of types. For example the method
.toString used before is defined in the base type scala.Any and concretised in
its subclasses whether it’s a primitive or an abstract data type. At the very bottom
of the Scala class hierarchy resides the type scala.Nothing which is a subtype of
every other type above. This special element of the hierarchy provides possibilities
in Scala to signal abnormal termination e.g. as a generic return type or as an element
type of empty collections as one will see in section 3.1.4 in detail. There is also a
base type scala.Null in the inheritance model of Scala which denotes all reference
types to a special type Null but unlike in Java it’s not only a keyword but an object
as everything else in Scala. One will see reasoning behind this particular class- and
type hierarchies more clearly in the next section.

One element frequently used in object-oriented programming is still missing in this
section about classes: static objects. They are not existing as such in Scala but there is
a more “tangible” version implemented here which is in fact manually created quite
often in other languages: singletons. Instead of defining a class with the class an-
notation one uses the annotation object. Those objects are values and have no con-
structor parameters since they cannot be instantiated more than once just like single-
tons. It is indicated in Odersky et al. (2011, p. 110) that singletons are far more flexible
with regard to type polymorphism and overloading as their static counterpart. In fact
a frequently design pattern used in Scala named companion object removes the need
of static members. An object with the same name as a particular class can be used for
example to create new instances of this class. An example is shown below which cre-
ates the previously defined class Response. As one can see the companion object acts
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like a factory for its related class, but there can be done even more with this construct
with pattern matching as one will see in the next section.

Listing 3.3: Companion objects in Scala

object Response {

2 def apply(token: String, hash: String) =

new Response(token, hash)

4 def apply(token: String) =

new Response(token, md5(hash))

6 }

// typical call to companion object

8 Response("12345", "c34df78")

Note that the example above also implicitly shows an interesting feature called dy-
namic method dispatch which is used here to distinguish between two methods with
the same name but with a different amount of parameters. This procedure can be also
done with different types as one will find out later. It will be proven that they are con-
ceptually the same as typed calls to higher-order functions as they were elaborated
in the previous chapter where substantial information for the code to be executed is
supplied at runtime (Odersky, 2011, p. 36). So far, data abstractions were done with
a new type of polymorphism which is solely coming from object-oriented program-
ming: subtyping - in the form of a simple yet powerful inheritance model with classes.
With this paradigm one can create effective data structures by abstracting the func-
tionality in a hierachical fashion which has a fundamental impact in Scala on how its
data structures are organised. This fact will be discussed in detail in section 3.1.4.

3.1.3. Types and Polymorphisms

As one has seen in the previous chapter there are two fundamental data types exist-
ing in Scala: value (or literal) data types and reference (or abstract) data types. Each
single data type is part of a hierarchical structure referring to one single base type
which inherits functionality of each superclass in its branch. But what if a particu-
lar group of types is sharing the same functionality whose relation is independent of
the tree hierarchy? It makes perfectly sense to apply the same paradigm which was
elaborated in pure functional programming here: type parameters.

Listing 3.4: Type parameters in Scala

trait ResponseT[T] {

2 val timeStamp: Date = new Date

def toXML: T

4 }
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As one can see in the example above the already known trait ResponseT got a
type parameter enclosed in square brackets named T. This identifier is further used
in the definition toXML which opens the possibility to provide a concrete return
type when the trait is actually extended by a class e.g. class Response extends

ResponseT[NodeSeq]. It is also possible to omit the type parameter and let the
compiler automatically check for the correct type via its type inference mechanism
(Pollak, 2009, p. 100). The advantage of this kind of polymorphism lies in the fact
that complex class hierarchies and redundancy across different branches can be om-
mited. It is important to note that evaluation is not touched by type parameters since
they are substituted before reduction takes place. This procedure is called type era-
sure and has it’s origins in Haskell but is also used in Java according to Loverdos and
Syropoulos (2010, p. 147).

At this point one has to recall that everything in Scala is an object having one dis-
tinct type. While Haskell had a basic classification of groups of types according to
Thompson (2000, pp. 225), Scala is more powerful in that respect because of its object-
orientation. But what still remains open until now is how functions or primitive types
are designed with objects. In fact one can use primitive types as they were defined in
Java but one can also use the inbuilt primitives with scala.Int. The Scala primi-
tives are organised in classes which are conceptually similar to the primitives defined
over lambda expressions in Church’s calculus. The advantage of an object-oriented
approach to primitives is that one can use inheritance to elaborate subsets, in the case
of scala.Int for example natural numbers which can inherit and extend function-
ality from its base class (Horstmann, 2012, p. 6). In addtion to that functions are static
objects with an apply method similar to as it was shown with companion objects
before . A function in Scala is designed to take one parameter type at once which is
then transformed into a result type through the function body. Scala supports up to
22 parameters in a function since all possible functions definitions are predefined in
the Scala API according to Braun (2010, p. 104). Nevertheless one can use currying to
create functions with more parameters by chaining up function returning functions
just like it was shown in section 2.3 with Haskell. This procedure requires a special
return type, which is a function itself.

Listing 3.5: An anonymous function application in Scala

def power(x: Int, f: (Int, Int) => Int) = f(x,x)

2

power(5, (x,y) => x*y) // possible application of power

Scala, as a object-functional language also handles anonymous functions besides of
named functions enabling the same capabilities as it was shown in pure functional
programming (Chiusano & Bjarnason, 2013, p. 24). The respective example above
shows on one hand how a basic function type can be written in Scala with the variable
f but also how an anonymous function is applied to another function as a parameter.
Note that internally the call f(x,x) is expanded to f.apply(x,x). The anonymous
function gets an identifier within the definition and is represented as a static object
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just like a named function (Odersky, 2013, p. 93). Furthermore methods can also be
handled as function types as soon as they get applied as such as parameter to another
method in the respective class.

It remains to be discussed why Scala was designed to provide both generic, type pa-
rameterised functions from functional programming as well as class subtyping from
object-oriented programming. The first advantage is that one can use type parameters
to restrict classes and definitions to a fraction of the class hierarchy with so-called type
bounds according to Wampler and Payne (2009, p. 259). With type bounds one can,
like it’s shown in the example below, provide an upper bound to which the given
type must apply to. In this case the type variable T must be a subtype of the type
ResponseT. One can also restrict the type variable to be a supertype of ResponseT
with e.g. [T >: ResponseT] and even mix those two bounds into an upper- and
lower-bound of a type variable.

Listing 3.6: Type bounds in Scala

1 def processResponse[T <: ResponseT](response: T) = {..}

The second ability enabled by the interaction between parametric- and subtype- poly-
morphism is called variance (Odersky, 2011, p. 56). In order to understand this mech-
anism there is the need to take a data type which was not yet explained in detail in
association with Scala: lists. Lists in Scala are typically immutable and may contain a
variety of different types. Together with a special type parameter annotation one can
project a subtype hierarchy onto this complex data structure at creation. Consider a
type variable A of the object list which is denoted with a plus postfix in its definition
e.g. List[A+]. This notation defines that the type A is covariant for this data struc-
ture. If one creates now a list with a concrete type like List[parent] and another
list List[child]where child is a subtype of parent, then these resulting list data
structures would have the same subtype relationship as its contained types. The op-
posite is represented with a minus postfix and is called contravariant. A contravariant
type parameter states that every supertype of the given type handed over to the re-
spective data structure is passing the same supertype relationship to it. The abilities
of variance also open the possibility to generalize methods and functions besides of
classes so that they can handle a distinct predefined group of types in parallel too
(Raychaudhuri, 2013, p. 96). A type variable without any postfix, as it was already
shown in previous examples, is called invariant which doesn’t hand over any hier-
archical information of the type applied to the data structure. According to Suereth
(2012, p. 137) all mutable data structures in Scala a generally invariant since the read
and write operations must be made type-safe.

So far one has seen impressive ways to decompose data structures through object-
oriented mechanisms but in Scala there is yet another way to make decompositions
which is originating from pure functional programming: Pattern matching. The object-
oriented way of decomposition with traits and abstract classes has its drawbacks
when it comes to the point of adding functionality in base classes; in most cases there
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is the need to update functionality manually in all subclasses as mentioned by Emir,
Odersky, and Williams (2007, p. 2). Of course Scala also provides possibilities for type
conversion and type-checking in that respect with asInstanceOf and isInstanceOf

but they are generally discouraged in this language according to Odersky et al. (2011,
p. 321). Type conversion, whereever it is needed in Scala can be done e.g. with defin-
ing implicit methods or values, which are providing unique capabilities in their
particular scope of creation. There is generally no need to stick to a class hierar-
chy when converting to other types according to Subramaniam (2009, p. 100). Con-
sider a function implicit def IntToString(i:Int) = i.toString. When-
ever an integer is applied to a value from type string in the definitions scope e.g.
val s:String = 25, the integer is implicitly casted to a string. It will be shown
later in section 3.1.4 that inbuilt Scala implicits are simplifying operations on generic
collections.

Pattern matching is ubiquitous in Scala and hence is used in a variety of situatons;
In the example below with matchObject it is providing a new perspective for type-
checking of objects.

Listing 3.7: Pattern matching in Scala

1 case class A(value: Int)

case class B(value: Int)

3

def matchObject(value: Any) {

5 value match {

case a: A => println("class A")

7 case b: B => println("class B")

case _ => println("everything else")

9 }

}

11

matchObject(A(1)) // prints class A

Before going into the details of this specific matching mechanism one must introduce
a “light” version of classes in Scala annotated with the prefix case. Case classes are
implicitly implementing a companion object with the apply method so that the an-
notation new can be ommited at instantiation (Schinz & Haller, 2011, p. 9). In the
example above functional decomposition is shown by solving a common problem in
programming: A decision statement from where it is to be “chosen” which kind of
object is actually handled. The definition matchObject takes a parameter of type
Any so any data type of Scala can be applied. The matching mechanism is similar to a
switch statement; in this case a specific type is matched in the form of the previously
defined case classes. Besides of that, pattern matching can be done on constructors
from case classes e.g. case A(_) but also on constants, tuples and wildcard patterns
denoted with underscore (Odersky, 2011, p. 48). As one can see the wildcard can be
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used anywhere in the provided pattern to omit the specification of a particular type
or literal.

Along with the research done within this thesis another interesting Scala type was
discovered which plays an important role in pattern matching with objects: Option.
This type can be applied to any other type in the Scala class hierarchy for exam-
ple Option[Any]. The option type has two subtypes: Some and None according
to Wampler and Payne (2009, p. 41) and is used for the same purposes as Maybe in
Haskell. This special type can be used to pass optional objects which can be matched
against either the case Some(A(_)) or None when applied to the previous exam-
ple. Altogether the capabilities with regard to types in Scala seem to exploit the best
of both functional and object-oriented programming enabling more flexible and fail-
proof solutions. It is mentioned in Odersky et al. (2004, p. 14) that object-oriented
decomposition should be used when more subclasses are implemented. If there is a
flat class hierarchy encouraged where more methods are created pattern matching is
the preferred way for decomposition in Scala.

3.1.4. Collections and Operations

In Scala one immediately encounters familiar data structures already introduced with
Haskell in section 2.5. Again a very basic sequence originating from functional pro-
gramming is used throughout application develoment in Scala: tupels. A simplified
version of a tupel is also existing in the form of a pair, which contains two elements
and is initialised as follows: val couple = (“Florian”, “Sabrina”). In this
case the value will be automatically recognised as a pair of strings. Of course one can
use any type in a pair or tupel; one can even mix different types within this ordered
sequence and create a relationship between those types. The most important use case
of tupels, tupling is widely used in Scala just like in Haskell but they can be also used
as a pattern here (Pollak, 2009, p. 66). For example one can define a pattern value val
(boy, girl) = couple, so that boy is assigned to the first value in the couple
pair and girl to the second. Of course there are also standard accessors for elements
in tupels. One could also yield the second value of the previously mentioned pair
with couple._2. Note that this is the only inbuilt operation available for tuples and
pairs according to Piepmeyer (2010, p. 145).

As one can imagine the most fundamental data structure of functional programming,
the list sequence is also vastly used in the design of Scala applications. In princi-
ple they are recursive and immutable just like in Haskell as opposed to imperative
arrays, which are typically mutable and flat as described in Odersky (2011, p. 63).
Arrays as already discovered are not part of a good coding style in functional pro-
gramming since it is difficult to process them effectively with functional standards
such as higher-order functions. Nevertheless, lists are homogenous and ordered too
so they can only contain one distinct data type just like an array.
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A typical list instantiation in Scala looks like this: val herbs: List[String]

= List(“sage”, “clover”, “ginger”). The applied type is explicitly noted
here which is not necessary since the compiler is able to automatically infer the type
parameter needed for this instantiated complex type. Lists are also recursive collec-
tions so there must be a base type which can be used to iteratively create lists out
of it. This type is called Nil and represents an empty list (Chiusano & Bjarnason,
2013, p. 35). Together with the construction operation :: which is pronounced as
cons one can already create a list with x::Nil where x can be from any known Scala
data type. This statement returns a list with exactly one element and is similar to the
standard syntax for collections as parameterised instantiation e.g. List(x) (Braun,
2010, p. 171). If one looks back to the previously defined list of string one could also
write val herbs = “sage”::“clover”::“ginger”::Nil according to Oder-
sky (2011, p. 64). Note that the creation of this list is right-associative as it is in Haskell,
so at first a list “ginger”::Nil is created which is then cons’ed with the next ele-
ment on the left until every element is added to the list.

A common pattern which occurs when working with lists is x::xs, where x is repre-
senting the head and xs the tail of a list as it is the case in Haskell. In Scala there are
also two attributes called head and tail which can be used e.g. to recursively take
out one element, or to access the first element of the list like e.g. herbs.head ==

“sage” or herbs.tail.head == “clover” (Wampler & Payne, 2009, p. 66). The
third inbuilt operation for lists in Scala is called isEmpty which can be used to test
any list if it contains something or not. Note, these operations are from importance
when dealing with recursions as it is shown in Odersky et al. (2011, pp. 348) since
patterns are used throughout the iteration procedure to identify specific conditions.
They are typically denoted with the construction operator; e.g. x::Nil can be used
as pattern to detect lists with a single element. With these capabilities it is possible to
signal termination of a recursion when the iteration is complete.

Besides of the general language elements needed for manually creating recursions
Scala also provides inbuilt first-class methods for the list collection, like length,
last or init. The latter for example extracts all elements of a list but the last one ac-
cording to Loverdos and Syropoulos (2010, p. 66). The functional nature of Scala’s list
implementation is revealed when looking at it’s specific access function: herbs(2)
returns “ginger”. Unlike Java’s accessor with square brackets Scala’s version is writ-
ten as a function application. Interestingly most of the methods applied to objects
can even be written like functional compositions in Haskell. In fact, here in Scala
the instantiation of a list provides a companion object with an apply method so the
access function is equivalent to herbs.apply(2) according to Pollak (2009, p.54).
While accessing an item in a list is possible in constant time the search for a specific
value with the contains infix or concatenation of lists with the ++ infix may take
up to linear time with recursion depending on the length of the list like it was the
case with Haskell. A reference implementation of the ++ operator is shown in the
listing below. It represents the actual library function as it is implemented in Scala as
a named definition concat. According to Odersky et al. (2011, p. 350) a set of basic
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library functions are similarily constructed as this example by using the cons operator,
pattern matching and tail-recursion optimisation.

Listing 3.8: Concatenation of Scala lists

def concat[T](xs: List[T], ys: List[T]): List[T] =

2 xs match {

case Nil => ys

4 case z :: zs => z :: concat(zs, ys)

}

In the case above the accumulator list is ys which is returned by the definition when
the iteration terminates. Compared to the Haskell example with the factorial function
in section 2.5.2 this tail recursion is more readable and compact with the case state-
ment. Furthermore, the list operations can be abstracted away from the contained
type with a type parameterised declaration as it is shown above. In most cases it is
not necessary to explicitly provide a type here because type inference can automati-
cally detect return types. Sometimes Scala also declares type specific operations with
implicit methods which are applied to the function automatically by the compiler.
This opens the possibility to only provide generic sorting functionality for sequences
which are concretizised by specific predefined Ordering types applied at compile
time (Suereth, 2012, p. 205). This can be useful when dealing with domain specific
languages (DSLs) where specific data formats with recurring semantical patterns are
transformed to Scala objects. These features will be shown on the basis of real-world
applications of Scala at a later stage.

The basic example before also shows that functions are first-class objects and higher-
order functions are rounding up the toolbox available for list types. Practical imple-
mentations for modification, extraction and combination of list types are therefore
type independent and tail-recursive as well (Raychaudhuri, 2013, p. 151). A typical
use case of such a function is map or filterwhich can be applied to any collection in
Scala. Both definitions usually apply a sequence of extractors and conditions which
are forming an anonymous function. A simple mapping on the herbs list can be
written as follows:

Listing 3.9: Mapping of Scala lists

1 herbs map (x => (herbs.indexOf(x), x))

== List((0, sage), (1, clover), (2, ginger))

Each element is transformed from a single value to a tuple with an additional in-
dex extracted from the position of the processed element. This example may be very
simple but it is obvious that one can modularize transformation procedures very effi-
ciently ommiting temporary variables and manual iterators. The definition of map in
the Scala library shows that it is generic with regard to its type and function param-
eter. Note that even methods can represent a function type as it is stated in Odersky

41



3. Application to Object-oriented Programming

(2011, p. 70) which can also be applied to objects in general with map. It is also re-
vealed in Piepmeyer (2010, pp. 198) that all function-combinating elements of a col-
lection are also generalised over higher-order functions like reduce or fold which
are even more abstract but also tail-recursive in their nature.

To round-up the most important sequences in Scala one must look at the non-linear
sequences implemented in the standard library. Through the hierarchical nature of
the Scala types non-linear sequences inherit functionality from a base class seq as
defined in Odersky (2013, p. 140). This inheritance relationship is shared with the
linear sequences such as lists so all capabilities already mentioned in this regard are
available as well because they are provided by the same parent type. According to
Odersky et al. (2004, p. 6) this is not the case with strings and arrays since these
sequences are directly imported from Java. Nevertheless they are casted implicitly to
sequences when applying functions such as filter as stated in this paper. A basic
version of a non-linear sequence in Scala is the vector type. A vector is represented
as a so-called shallow tree; the depth of the tree structure is kept at a minium (Braun,
2010, p. 173). As opposed to linear sequences this type of collection can access it’s
elements in constant time proportional to the depth of the tree. The only syntactical
difference between lists and vectors is the cons operator which can be denoted either
with +: to add an element at the leading position or with :+ to add an element
at the trailing position of a vector. Otherwise the instantiation of vectors is done the
same way. A typical operation on sequences frequently used with vectors is flatMap
which combines a function mapping on elements followed by a concatenation of the
results.

Together with the range type vectors are subtypes of so-called indexed sequences which
all have the advantage of search in constant time (Loverdos & Syropoulos, 2010,
p. 50). A range is even a more simpler type as a list since it only defines a start,
an end and a stepping number, e.g. (N to 1 by -1) or with an exclusive end
1 until N. This syntactic features and its compact definition makes ranges also
very fast as it is proven in Suereth (2012, pp. 192). Ranges can be used in a vari-
ety of situations in Scala for example in imperative iterations like while and for.
But for can also be expressed very efficiently when dealing with sequences in gen-
eral. A loop over the herbs list might look like this: for(h <- herbs) yield

(herbs.indexOf(h), h). This statement would create the same result as the pre-
vious example with map. The most important part of this loop is the generator function
which extracts one element after the other from the list in this case but this could also
be a range type for example as shown in Horstmann (2012, pp. 21). One could even
use curly brackets to be able to add more generators and additional conditions in the
for-expression. The reason behind having such imperative structures in Scala is that
it is more convenient for a developer coming from imperative programming. In any
case Scala rewrites for-loops into a respective map, flatMap or filter internally de-
pending on which particular sequence it is applied on (Wampler & Payne, 2009, p. 62).
The extendible nature of for allows one to create custom iterating mechanisms over
more complex data structures. In order to work properly with such arbitary data
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structures one must only define the above mentioned substitution-methods in the
structure’s declaration. Those will be called implicitly by the compiler when a non-
standard type is encountered in a for-expression according to Odersky (2013, p. 91).
As one can imagine such a language design opens a lot of possibilities when work-
ing with pure object-oriented data structures but also when handling external data
formats resulting from database queries or XML definitions.

Besides of sequences, sets and maps are completing the collection library of Scala to
support all common data structures originating from pure functional programming.
As one already knows sets are unorderd but elements are occuring only once in this
data structure. Instead of head and tail operations there is only one basic operation
existing for sets: contains (Wampler & Payne, 2009, p. 174). All other higher-order
functions known from sequences are also available for sets through this basic oper-
ation. It is important to note, that Scala provides a set of casting methods for each
collection type to transform a particular instantiation into another. For example one
could use toSet on a list to create a set with all duplicates removed. A more fre-
quently needed type of an unordered set in Scala is the map which is constructed
similar as in Haskell: A unique key is associated with a value building up a single
element of the map data structure in the form of a pair.

An interesting feature of the Scala class hierarchy is that sets as well as sequences
inherit from the base class iterable. It can be seen from examples in Loverdos and
Syropoulos (2010, p. 381) that there is a significant amount of operations shared. For
example, maps have an apply method for accessing elements via their unique key so
they are also built up with companion objects and operated on with function applica-
tions. Besides of that maps provide a get operation which also accesses an element
via it’s key. This operation returns an Option type instead which is more conve-
nient for further processing and decomposition as it is clearly shown in Horstmann
(2012, p. 44). To handle basic exceptional cases when working with maps one can
also define a default value directly at instantiation. Other sequences like lists can be
transformed directly to maps with the groupBy operation for example which returns
a map of lists bundled by provided conditions. These conditions can be built up by
function applications or through pattern matching for example. The obvious simi-
larity of Scala semantics compared to operations found in DSLs is intentional by it’s
principle language design; the declarative style of programming in Scala is linked to
well-known database languages and data exchange formats to aim at an optimal in-
tegration of common frameworks in this versatile language. The degree of flexibility
with abstract operations on custom data structures will be shown by the examination
of real-world applications of the Scala language in chapter 4.

The mentioned variations of collections and operations in this section also show that
one must be very cautious when selecting a data structure for a specific use case. If
chosen properly one can drastically reduce the length of code and create modular,
abstract operations which can be re-used in other projects or bundled in custom Scala
libraries. When compared to the original concepts in Haskell and pure functional
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programming in general, the object-oriented fashion of Scala is adding a lot of simpli-
fication with regard to types and polymorphism with more elaborated type-checking
mechanisms and common vocabulars for processing of data structures. For practical
applications within the IMPEx project it will be necessary to evaluate if Scala is able
to handle IMPEx internal data formats suchs as the XML based IMPEx data model ) ef-
ficiently. Furthermore it will be necessary to measure how well Scala can access web
services and serve data to HTTP clients.

3.2. Functional JavaScript

In the last section of this chapter the author wants to draw attention to a language
which grew historical through the evolution of the World Wide Web to a powerful
language for client-side manipulation of data originating from common HTTP web
servers, namely JavaScript. The reason for that is on one hand that it will naturally be
used in course of development of client-side applications in IMPEx but on the other
hand also because it is enriched with functional aspects already known to a careful
reader of this thesis. On the basement of the latter assumption resides that typical
JavaScript code is designed and executed almost solely through functions. JavaScript
functionality is embedded into HTML code with event-triggers which are basically
representing functions calling other functions. Modularity of code plays a big role in
the development of complex JavaScript applications.

Today, JavaScript is classified as a so-called prototype-oriented language which can be
seen as a subtype of general object-oriented languages according to Stefanov (2008,
p. 149). A prototype as such is a kind of function encapsulating properties and meth-
ods with a specific lexical scope which can be accessed through one variable from out-
side. As such it is representing a closed unit of functionality which can be instantiated
and re-used. According to Haverbeke (2011, p 96) every object in fact is a prototype in
JavaScript or can at least be re-used and modified as a prototype with it’s originally
provided properties. Every function in JavaScript automatically has a prototype

property assigned which can be seen as some kind of constructor pointing back to
the respective functional definition. As one can see in the example below properties
and methods of a prototype-function are denoted with this and private properties
of the prototype are written just like local function variables. Access of properties
within a prototype is maintained with the this annotation the only exception are
private properties. As it is shown in the second paragraph of the example, function-
ality can be added (or modified) through the prototype keyword which extends
the original constructor of the applied class. The constructor is finally called with the
new prefix as it is usual in object-oriented programming languages which in this case
creates a new instance of Response.
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With this basic concept it is fairly simple to chain and combine functions in Java-
Script and it already provides some sort of inheritance because one can use existing
prototypes, modify them from outside and treat them as new, seperated prototypes.

Listing 3.10: A prototype definition in JavaScript

function Response(token) {

2 var timeStamp = new Date(); // a private property

this.token: token;

4 this.hash: md5(this.token);

this.getTimeXML: function() {

6 document.write("<time>"+ timeStamp + "</time>");

};

8 }

10 Response.prototype.printMsg = function() {

document.write("Token: ", this.token,

12 " Hash: ", this.hash);

};

14

var httpResponse = new Response("1234af56e");

16 httpResponse.getTimeXML() // typical property access

httpResponse.printMsg() // new method access

Besides of the notation above one could also add functionality over the prototype
property to an already instantiated object like httpResponse. In that respect Java-
Script is, as well as Scala, a multi-paradigm language. But JavaScript is considered
as loose with regard to purity of functional aspects while Scala is rather strict if one
looks at it’s type system for example. As one can see JavaScript has no types de-
clared for function parameters and local variables; in fact no type is ever provided at
declaration since JavaScript is dynamically typed (Stefanov, 2008, p. 98).

Nevertheless according to Resig and Bibeault (2012, p. 32) all functions in JavaScript
are first-class objects just like in Scala, so the basic support for pure functional pro-
gramming as discussed so far is here. JavaScript has also an familiar way to define
scopes over functions; a function is basically only able to access data defined within
its body. But in addition to that similar to functional programming encapsulated
functions can access local variables of their calling objects dynamically with the this
annotation (Fogus, 2013, p. 55). Independently from where a function is executed it
will check it’s current scope when working with the this property. Another aspect
which makes Javascipt more functional is the popular usage of anonymous functions
which can be found frequently in so-called callback functions. These functions usually
take a function as parameter which is called somewhere in the body afterwards. But,
as discovered in Scala too, one can use e.g. function(test){ return “Test:“+

test;} without assigning it to a variable and directly apply the statement to another
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function. This is one feature where JavaScript does mimic pure functional languages
with higher-order functions to a certain extend.

Due to the fact that everything is an object in JavaScript, functions can naturally
be applied and returned by other functions. Haverbeke (2011, pp. 75) shows some
practical examples with the already known map and reduce functions which can
be easily translated to JavaScript code. It is important to note that instead of re-
cursions, for-loops are used for iteration here because recursive structures are not
optimised by JavaScript internally and could easily create stack overflows in web
browsers according to Ullman (2012, p. 262). Moreover, recursions aren’t really use-
ful and necessary from the language design’s perspective because it would create a
lot of intermediate data structures but everything is mutable in JavaScript by default
anyway. It seems that the mindset followed by JavaScript with combining functional
and object-oriented programming paradigms has its differences when compared to
Scala’s approach because it is an interpreter language. JavaScript doesn’t apply more
complex capabilities from object-oriented or functional programming such as sub-
typing and generic functions because it is dynamically (and implicitly) typed and
there is no way to specify types prior to execution. So in fact, there is no possiblity
to program type-safe which can and does lead to unpredicatable code. JavaScript
has a complex internal type casting system which can not be influenced from outside.
Whenever JavaScript is comparing two different types it tries to convert one type into
another automatically. The only safety measure here is that one can use the typeof
expression to check types of a variable during runtime (Stefanov, 2008, p. 27).

Yet another aspect of Scala can be found in almost any program written with Java-
Script: closures. They especially make use of the functional scope explained before
by defining functions within other functions which are then only accessible locally.
In addition to that, closures expose functionality to the scope outside by returning
functions which are usually modified by their applied arguments. As a result, Java-
Script often uses so-called function factories which are conceptually quite similar to
companion objects in Scala as discovered by the author. Moreover with the proto-
type property, closures can be used effectively as generator functions providing a set
of methods over infix operations which are modified depending on the prototype’s
arguments. All functions in JavaScript can dynamically add arguments with an in-
built apply method which adds another possiblity for functional composition called
partial application, typically used together with closures (Haverbeke, 2011, p. 91).

As already indicated, some elements of functional programming are completely left
out in the original concept of JavaScript. Besides of tail-recursion, these elements are
immutability, monadic data types and pattern matching, to name the most impor-
tant covered in this thesis as discovered by the author. Fortunately a lot of extension
libraries were elaborated during the years where JavaScript gained more and more
popularity in web development. For example underscore.js provides recursive built-in
functions such as map which are also tail-optimised to avoid stack overflows. This ca-
pability also implicitly requires and makes use of immutable data structures so local
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variables can completely be left out as opposed to traditional iteration mechanisms
such as the previously mentioned for-loops. The implementation details are further
described in Fogus (2013, p. 154-158). On the other hand there are libraries which
enhance JavaScript’s object-oriented nature and glues it more to the functional para-
digms found in it’s standard concepts. One interesting example is TypeScript which is
a meta-languague compiling to plain JavaScript. TypeScript adds real classes, inter-
faces and a complex inheritance model as it was seen in Scala with mixins. In addition
to that, one can define generic functions with type parameters and a static typesys-
tem can be used which is also enriched with a type inference mechanism just like it is
given by Scala. Maharry (2013) provides a detailed introduction to this extension of
JavaScript and gives a good overview about the motivation with regard to complex
web applications.

In this thesis it will be of great importance when working with data formats served by
the IMPEx web services, to process requested data sets appropriately on the server
and delegate them efficiently to the client. It will be necessary to identify a com-
mon exchange format as well as to define data access mechanisms for this specific
format on the server as well as on the client. Both mechanisms must be extendable
and should be elaborated exploiting the same software paradigms to simplify the
architectural design. With the previously mentioned aspects there is already a per-
fect foundation given to be able to write conceptually similar software on the server
and on the client. The extensive capabilities of Scala and it’s similarities to JavaScript
with it’s loose set of functional and object-oriented aspects enriched with extension
libaries provide a powerful basement for further, more specific evaluation with re-
gard to technical requirements of the IMPEx portal. The most important fields will
cover parsing of external data formats and handling of DSLs where functional pro-
gramming has distinct abilities for developing user defined libraries. Furthermore
it will be needed to look into the implementation of asynchronous communication
mechanisms in Scala to enforce scalability through parallel execution of particular
tasks. Here, it will be needed to refer back to the originating concepts of functional
programming to identify the most suitable data structures and related algorithms for
manipulation. Finally it will be necessary to see if Scala is advanced enough to be
able to handle all capabilities of the Web Service Architecture Stack whose principles
were already discussed in Topf (2012b, p. 12-26).
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Capabilities

So far, one has seen a selection of object-functional aspects which seem at the first
glance rather general and abstracted in their purpose. In order to be able to evaluate
these basic capabilities for their usefulness in development of a highly distributed,
domain-specific and service-oriented web-based framework as it is needed for the
IMPEx portal one has to look beyond these theoretical definitions and seek respective
indications in real-world applications. Most of the basic and fundamental technical
requirements needed for successful implementation of the IMPEx portal are already
known to the author because of previous studies in Topf (2012b) and Topf (2012a).
These studies aimed at the evaluation of developments in scientific web-based appli-
cations as they are created in course of the EuroPlaNet and IMPEx projects. A clear
path was shown in these papers where the elaboration of an IMPEx portal is mainly
set to go. For now only two major aspects will be studied in this chapter since they are
needed despite of specific user- and technical requirements proposed by the IMPEx
community which will be elaborated afterwards. At first, a parser for XML docu-
ments will be required which is able to process the contained information in a way
which makes them at most useful for the user and specific tasks but also for other web
services using the capabilities of the IMPEx portal. It will be of particular importance
here to transform and save the extracted metadata in a Scala native data structure so
that the information is kept type-safe and can easily be reused for other functionality
made available within the portal architecture. Since all XML descriptions served by
the IMPEx infrastructure are also dynamic in their amount of contained resource en-
tries and respectively in their size there must be a well elaborated mechanism at the
IMPEx portal to serve the content of the XML documents in a homogenous and effi-
cient way. The validation of the XML structure will be also of significant importance
here so there must be also a procedure to interprete XML Schemas with a respective
domain-specific language made available through Scala features as one will see in the
upcoming sections.

In addition to that, the server architecture operating the IMPEx portal software must
be able to handle requests asynchronously and in parallel because their execution
might be time-consuming or relying on web services which are distributed across
the IMPEx infrastructure. Since IMPEx is currently also using a predefined set of
web services deployed over various WSDL descriptions it will be necessary to pro-
vide generic interfaces to these capabilities via customised Scala libraries. Those in-
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terfaces will be able to exploit functionality accessible from different providers dis-
tributed over the network which may update and extend the provided services inde-
pendently. The portal architecture must be flexible enough to extend all its accessible
capabilities dynamically upon changes coming from the service providers. One will
see in the upcoming sections that Scala is able to handle all IMPEx definitions em-
powering a service-oriented architecture. Moreover it will be verified that Scala is
credible as a modern functional language which is fostering the creation of custom
“sub-languages” providing common semantics for specific dedicated purposes as it
is needed for the IMPEx portal.

In any case a choice must be made on the used server technology which is basically
able to provide web services based on Scala and can be easily used as a messaging
middleware for all included IMPEx functionalities. The mentioned backend features
needed for the IMPEx portal must be provided in an appropriate way so that they
can be exploited by any common frontend implementation technique. The chosen
middleware to IMPEx services must be flexible enough to serve its capabilities to ei-
ther remote or local clients by using standard web protocols. Various discussions on
stackoverflow1 indicate the growing usage of Scala in web-based enterprise applica-
tions for specific purposes where scalability and fail-proofness play a significant role.
Note that stackoverflow is a moderated Q&A forum for aspects of software develop-
ment and is not considered as quotable here. Nevertheless, the search for respective
discussions have revealed a listing of various enterprises such as Twitter2 who admit-
tedly use Scala for their infrastructure. It is discussed in Venners (2009) that Twitter
uses Scala for message queueing systems between their server daemons and fron-
tends. The decision within IMPEx to use Scala as programming language was pri-
marily influenced on the basis of these and other open discussions on the web whose
claims will be proved in course of project-specific evaluation studies in the upcoming
sections.

4.1. Domain Specific Languages and Parsers

As already indicated, a significant portion of the IMPEx infrastructure is handling and
processing information stored in structured documents which are served in XML for-
mat. The primarily used XML format is describing resources accessible through the
IMPEx service providers. The provided XML trees are complying with the defini-
tions of a custom XML Schema which is built upon the well-known SPASE standard,
already studied and evaluated in Topf (2012b, pp. 41). The resulting IMPEx data model
is naturally designed for a specific problem domain which was identified in course
of elaboration of the user requirements for the IMPEx infrastructure. It’s specific pur-
pose within this project is to describe the participating simulation models, archived

1Stackoverflow, moderated Q&A forum for programmers, see: http://stackoverflow.com/
2Twitter, see: https://twitter.com/
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simulation runs and respective datasets so that the databases available through the
service providers are easily exploitable through their common metadata. In particular
the models cover two fundamentally different plasma and magnetospheric simula-
tion environments, namely the HMM and PMM models which are described further
in Topf (2012a, pp. 30).

Of significant interest in this thesis is the fact that XML is used here to create an own
markup language for describing how data is organised in scientific databases avail-
able via their dedicated IMPEx web services. This markup language provides the
necessary information for the access layer to databases so that clients can identify
useful datasets through the available structured documents before calling the respec-
tive web service access methods. The implementation details of the database struc-
ture are hidden by the provided standardised metadata. The metadata is primarily
used to construct the SOAP messages needed for accessing the underlying datasets
through the before mentioned web services but they will be also used to enrich the
user interface of the IMPEx portal with useful information describing the hierarchi-
cal content of the XML trees. For that reason every single resource stored within the
XML structure is e.g. indexed with and addressable through an XPath variable stored
within a special XML element ResourceID, as it will be shown later by example. It
is only important to note here that this used index represents also a hierarchical struc-
ture within the XML structure which will have an impact on the architectural design
of search and filter algorithms for the portal.

In any case, the foreseen Scala library making use of this XML data model needs
to provide standard procedures to iterate through the given metadata trees. The
planned functionalities must be made composable so that they can be combined for
specific purposes. Moreover there must be the possibility to elaborate a generic and
versatile parsing mechanism which is tied to the XML Schema and is easily extend-
able when the XML data model is updated. The main idea here is to identify reccuring
query patterns on specific XML elements within the trees which are then generalised
and abstracted into respective access methods available through the portal. As one
will see later there is a variety of use cases where basic queries can be chained to
form one unit in the planned interface to IMPEx services and data trees. The result
should in fact form a so-called internal domain specific language expressed by means of
Scala syntax and semantics which provides a dedicated vocabulary enabling the ef-
ficient exploitation of information stored within the XML documents for consequent
web service access. According to Meredith (2012, p. 26) especially strictly typed func-
tional languages such as Scala are predestined for providing an “abstract language
syntax” for working in a specific domain because it is rather easy to identify groups
of related types in domain-specific models in such languages.

Domain-specific languages, according to Ghosh (2011, p. 4) have one significant feature:
They usually provide a dedicated language with specific semantics which is able to
map from artifacts of a problem domain into artifacts of a solution domain. The
most important aspect relevant for this thesis is that such languages usually provide

50



4. Evaluation of Object-functional Capabilities

a domain-specific model which enables a common terminology between domain ex-
perts and software developers but also for potential users. In fact the artifacts created
through domain-specific languages provide some kind of glue between the problem-
and solution domain. It gives the user an abstracted way to communicate and trans-
late problems to be understood by the solution domain without having particular
knowledge of their internally used data structures. In the perspective of IMPEx an
example could involve a specific ResourceID stored in the tree which is tied to a
set of operations provided through a solution domain artifact. In fact all elements of
the trees can be represented appropriately within Scala’s object-oriented nature and
have a dedicated set of methods available in their scope. Every element has a specific
static type so that every operation made on elements can be considered as type-safe
and fail-proof respectively. This limited expressivity as pointed out in Ghosh (2011,
p. 13) is making the foreseen access interface to IMPEx services and methods domain-
specific.

It is already defined partly through the service descriptions of IMPEx data providers
which message calls will be part of this internal domain-specific language and their con-
crete definition will be part of the user requirements. It will be of importance in any
possible situation that those message calls are self-describing and request/response for-
mats are seamlessly fitting into the specific purpose within the IMPEx infrastructure.
A certain flexibility must be given to implement different input formats for example.
Note that at this point the internal domain-specific language is not directly made avail-
able for subsequent exploitation of functionalities to the portal client so the Scala
solution must be further embedded within a common web-based interface. It is tech-
nically independent of the actual implementation of access mechanisms elaborated
in the context of Scala. This external interface will be the only point where client
requests are accepted, handled and processed. It will wrap the provided domain-
specific library for acessing IMPEx services and resources in an additional protocol
layer which will be defined later in the architectural design. This layer will be build
upon the HTTP protocol and the capabilities available through this standard should
be sufficient for providing a homogenous access layer to the user.

What is fundamentally needed for the specific internal domain-specific language planned
here are efficient parsers for XML documents and appropriate abstractions of their
content within Scala. The latter requirement makes Scala a particularly good candi-
date since the language is providing optimal support for creating custom data types
as it was shown in section 3.1.3. Furthermore, implicit conversions are helpful when
designing domain-specific libraries where custom data types are inherent and also
frequently used. The implemented data structues in Scala must naturally be inter-
preted and translated automatically in various situations to comply with the used
internal IMPEx data model at any time. The abstraction provided through the data
model must therefore be directly transformed into appropriate Scala objects. The
contained metadata can be then exploited just as if they were stored within XML
structured documents and extracted with respective XML specific query languages.
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With regard to general parsing capabilities Scala as described in Odersky et al. (2011,
p. 759) provides so-called parser combinators which can be composed into custom pars-
ing mechanisms for external data formats coming from any source outside of Scala’s
native language environment. There is a dedicated data type Parser implemented
where one can define e.g. regular expressions for processing needed custom data for-
mats meaningfully. A few basic examples of standard combinators provided by the
respective Scala library are shown in Braun (2010, p. 180) together with illustrative
definitions of self-defined parsers. Note that it is also emphasised in Wampler and
Payne (2009, p. 230) that parser combinators in Scala provide a good alternative to
well-known parser generators, which create classes and objects out of parser defini-
tions. Those code generators are usually bulky and not easy to debug according to
Chiusano and Bjarnason (2013, p. 155) and it’s mentioned here that in most of the
common use cases parser combinators are sufficient for handling external data for-
mats. It is yet to be evaluated, whether it is necessary to implement custom parser
libraries for external formats used in IMPEx or not.

For now, preliminary studies of the capabilities within Scala have shown that XML
strings are first-class objects in Scala. Literals are automatically recognised as XML
data by Scala’s type inference mechanism independently if they are read from the
filesystem or constructed programmatically. This makes a lot of sense since XML is
vastly used as cross-language communication mechanism and nearly every higher
programming language is able to process this format natively. The syntax of Scala
is also helpful here because the usage of infix operators and function applications
without brackets are providing good possiblities to write libraries with vocabularies
similar to data query languages as they are known from e.g. database implemen-
tations and XML standards. According to Odersky et al. (2011, p. 655) Scala has
essential functionality made available through it’s standard libraries for processing
strucutured data which is e.g. serialised and sent over the network. It is shown
clearly here that Scala has particular advantages as a host language when a standard-
ised communication framework based on XML is playing a fundamental role within
a service-oriented architecture. XML strings in Scala are represented through one
of the following classes or data types, which are naturally sub-types of each other:
NodeSeq, Node, Elem or Text. For developers already familiar with XML defini-
tions, these type annotations are extremely helpful.

As one can see in the example below XML node sequences can easily be constructed
from scratch and be parsed by using an syntax similar to XPath. The double backslash
is signalling a relative path search, whereas a single backslash would represent an
absolute path search. XML attributes, when used, can be extracted with the @ prefix
followed by the attributes name. Text nodes, as shown in the example are extracted
with an respective class method following a node selector statement.

Listing 4.1: Example of XML processing in Scala

1 var ResourceName: String = "Hybrid_LATMOS"

52



4. Evaluation of Object-functional Capabilities

3 var xml: NodeSeq =

<SimulationModel>

5 <ResourceID>impex://LATMOS/Hybrid</ResourceID>

<ResourceHeader>

7 <ResourceName>{ResourceName}</ResourceName>

</ResourceHeader>

9 <SimulationType>Hybrid</SimulationType>

<CodeLanguage>Fortran2003</CodeLanguage>

11 </SimulationModel>

13 var resourceID: String = (x \\ "ResourceID").text

With these basic capabilities one can already construct libraries for serialisation and
deserialisation of XML structures smoothly, e.g. by introducing respective parsing
and writer methods for classes or by defining implicits for translation of custom data
types in a dedicated scope. Pollak (2009, p. 78) also gives some examples how pat-
tern matching can be used here to support more abstraction in deserialisation mech-
anisms for XML documents implemented with Scala. Pattern matching can be used
in this context to define conditional search algorithms for XML data structures quite
efficiently. Since the IMPEx data model is producing large and complex XML doc-
uments describing the contents of simulation databases complying to it’s extensive
XML Schema, it is of great importance to look at possibilities beyond these simple
parsing capabilities. As discussed in Topf (2012b, pp. 13) XML Schemas provide use-
ful information about specific XML structures such as validation rules, element rela-
tionships and type constraints for example.

Of course it would make perfect sense to make use of this information when trans-
forming XML data into internal Scala data structures. It is indicated in preliminary
studies in Meredith (2012, p. 78-80) that a so-called data binding mechanism - auto-
matic conversion from XML data models to Scala objects - can be achieved by exter-
nal Scala libraries, such as scalaxb3. On the other hand there are additional libraries
available for Java which provide data bindings as it is described with the jaxb library
in Ullenboom (2012, p. 1153-1158). Both of these possibilities must be considered
within the architectural design of the IMPEx portal, where it finally needs to be de-
cided whether to write the internal domain-specific language for exploiting the IMPEx
data trees based on parser combinators and inbuilt Scala functionalities or by using
parser generators with external libraries. Yet it is already indicated in Meredith (2012,
p. 79) that especially in situations where a communication and data exchange proto-
col is based on domain-specific XML data models external libraries are more flexible.
The reason for that is that external libraries such as scalaxb implement generic monads
for parsing which are independent of specific domain models and therefore easily
maintainable and extendable through automatic and implicit conversion in this case.

3Scalaxb, XSD and WSDL data binding for Scala, see: http://scalaxb.org/
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4.2. Parallel and Concurrent Programming

As already indicated at the beginning of this chapter it will be needed for the IMPEx
portal that requests coming from local or remote clients can be handled asynchronously
and in parallel. For now there will be a close look on what Scala can provide in order to
be able to define libraries which enable concurrency of their operations independently
of the later used network transport protocol. The most important issue which needs
to be taken care of is that blocking operations and shared data over different threads
on the server should be avoided in any possible situation since it is considered as not
optimal with regard to composability of concurrent tasks as stated in Haller and Som-
mers (2011, p. 26). Moreover error handling is significantly harder to implement as
well as error recovery according to the practical examples described in Wyatt (2013,
p. 36). It was shown in the theoretical chapters of this thesis that functional program-
ming and its fusion with object-functional programming in Scala are fostering the us-
age of non-blocking operations and shared data can be avoided by using immutable
data structures. Moreover, the whole functional programming domain with more
fault-tolerant procedures, better modularity and more concise code are predestined
for two branches of computing which are considered important for data analysis tools
like they are implemented and used in IMPEx: multicore- (or parallel-) and cloud- (or
distributed-) computing.

According to Neward (2008, pp. 3) the main reason for industries to use Scala and
object-functional programming are these particular fields of computer science so the
attraction in using Scala in this thesis is originating from these assumptions. Both
capabilities enable concurrent programming to different extends and based on spe-
cific aspects and requirements which are outlined in Wyatt (2013, pp. 32). In the case
of IMPEx, parallel computing it is important for the operation of simulation models
and distributed computing is predetermined through the elaborated service-oriented
architecture within the project. As one can imagine, it will be a standard situation
in the latter case for example that asynchronous events are triggered which must be
non-blocking to other tasks in the distributed framework provided by IMPEx. In any
scenario of concurrent actions within IMPEx mutable state will be an critical element
which needs to be treated in an efficient and fail-proof way. As it was already men-
tioned in the theoretical chapters of this thesis one must move away from modifi-
cation of mutable state whereever possible and look more on the transformation of
immutable values respectively. It was also shown that composability within func-
tional programming helps in abstraction and modularisation of functionality so that
parts of a program can run independently and concurrently in the long run. One will
see here that the usage of functional combinators and the concentration on transfor-
mation rather than modification will help in shrinking the complexity of certain parts
of the software.
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4.2.1. Actors and the Akka framework

The previously mentioned motivation goes also in-line with the current shift of para-
digms in the design of web-based systems from structured to event-driven reactive sys-
tems where there is a particular focus on the scalability of systems rather than solely
on performance (Gupta, 2012, p. 14). With regard to IMPEx it is yet to be decided
whether performance or scalability is the more important issue to be considered.
Currently the main focus lies on the elaboration of a concurrent and non-blocking I/O
so asynchronous events will most probably dominate the message passing through-
out the IMPEx infrastructure. There will be a focus on the description of specific
dataflows in the service-oriented system similar to workflow descriptions as they are
already known within web-based environments. Following the assumptions in Allen
(2013, p. 10) this is also part of an optimal domain-driven design and gives excellent
opportunities in exploitation of the data model and respective web services available
within IMPEx. The foreseen architecture of the portal will keep each service loosely
coupled as it was put to practice in the original design of the IMPEx infrastructure. The
first practical implementation of an asynchronous messaging system within Scala are
the so-called actors. The principle behind actors is inherited from the functional pro-
gramming language Erlang and basically consists of an abstracted way to work with
standalone threads and additionally provides a communication mechanism between
them (Haller & Sommers, 2011, p. 25).

As it is also stated in Haller and Sommers (2011, p. 28) the manual work with Java
threads is considered as a last resort when there is no other way to synchronize spe-
cific funtionality and shared data between threads is explicitly needed within a func-
tionality implemented in Scala. Note that in this case the developer would need to
take care of the synchronisation with dedicated locks and related error handling man-
ually. Actors help in this regard because they do not enforce locking and the developer
doesn’t need to take care of synchronisation functionality by him- or herself. They are
also embedded in the “Akka middleware framework” which is included out-of-the-
box in Scala. In principle, actors in both cases are able to send and receive messages
to and from other actors as well as they are able to react specificly on certain mes-
sages (Piepmeyer, 2010, p. 263). Each actor is comprised of a set of objects and each
object within an Akka enabled program code can and must be related to only one
specific actor. Each modification of an object from an external entity must be handled
by sending messages to its related actor. In addition to the provided general mes-
saging middleware, actors can also have queues so incoming messages are stacked
for processing. The control flow for the queue implementation in actors is shown
by example in Raychaudhuri (2013, p. 265) where it is also noted that receiving and
handling of messages is done by two different threads. These basic features clearly
show why scalability and modularity is fostered by this concept and reliability of
communicating services can be increased.

The main advantage of actors in the scope of this thesis is that they primarily share
nothing and their underlying processes react on predefined events. Therefore one ex-
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plicitly defines the flow of data when developing with actors. Through the provision
of message queues the processes are never blocked by default. It also does not depend
on whether the actor is accessible locally or remotely if appropriate network proto-
cols are made available to the Akka library (Gupta, 2012, pp. 218). Note that actors
are designed to encapsulate state and there cannot be any concurrent action within
the actor implementation itself. Nevertheless it is possible to maintain a global state
in actor systems with more complex functionality of Akka. In fact Akka does not
always give away a thread per actor because sometimes this would create too much
overhead. Instead the library provides a few thread pools which are shared automat-
ically by the implemented actors in the Scala application (Pollak, 2009, p. 150). This
approach allows a kind of load balancing and relatively fast messaging systems be-
cause threads are reused rather than created at each message call. In fact actors are
completely fitting into the functional paradigm because they tend to send immutable
data to one another according to Raychaudhuri (2013, p. 261). One interesting aspect
for this thesis is the possibility to group actors by a specific domain where they are
supervised by a single actor. With that capability one can build up tree-like depen-
dencies between actors and grouped actors. Each node in the tree can be seen as a
kind of supervisor which takes care of handling its child actors. Of course all super-
vised actors at a specific node can also be run in parallel and they can persist and
maintain their own internal state within the dependency tree (Suereth, 2012, p. 221).
Criticial data is processed by the supervisor, portions of data are delegated to the un-
derlying worker-actors on demand and the supervisor also recognizes and handles
errors coming from its actors.

What is also interesting when working with actors is the way how they can be par-
allelised. Since actors are nothing more than objects one can spawn the same actor
as often as its needed and they will be having their own independent resources and
workload respectively. It is noted in Allen (2013, p. 25) that actors should only get
one specific task or responsibility in a chain and there must be a clear definition of
this task in order to be able to leverage all functionalities provided by actors. With
regard to IMPEx it is even recommended at the user requirements in Topf (2012a,
p. 21-23) that each service and database should only serve functionality and data for
a particular set of tasks. Any possible scenario where tasks are chained which rely
on each other would be a favourable choice for actors. If these chains are multiply
called through an appropriate web protocol they are also exectuted in parallel. Yet
there is one thing which is needed when working within a concurrent and distributed
environment: synchronisation. Besides of the standard capabilities of actors one can
explicitly use a special sychronised actor where one can define then blocking op-
erations. Those can also be limited in their amount of processes which can make use
of the synchronised actor according to Odersky (2011, pp. 131).

Again it is important here to have a clear view of the foreseen architecture of the
IMPEx portal when looking at these capabilities. The separation of tasks must be
clearly defined within the architectural design as well as the distribution of supervi-
sors, if needed across the planned system. Correlating tasks must be isolated so that
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they only use their own dedicated resources in order to achieve physically separated,
standalone processes within the system. Wyatt (2013, p. 480) mentions in this regard
that blocking tasks must only be used if there is no possibility to solve the problem
with asynchronous calls. What is particularily important for the development of the
IMPEx portal is that such messaging frameworks provided with actors are closely
related to the elaboration of domain-specific languages. In fact Akka can be seen
as internal domain-specific language for concurrency tasks which should be brought
in-line with the development of tasks within the domain of IMPEx resources.

4.2.2. Scala Futures and Use Cases

Besides of Scala actors and the more advanced Akka library there is another mech-
anism which enables concurrent computations quite easily. The so-called Futures

can be spawned at any location in the source code where one is then able to work with
asynchronously working processes where usually no result is immediately available.
In fact one can work with a Future object independently whether there is actually
a result stored in it or not. This capability makes it possible that the program can
continue working on other tasks and passes around an “unfinished” variable which
only blocks when it is finally accessed for computations. In fact the Future object
has two possible callbacks which are changed asynchronously and can be accessed
within the program: onSuccess and onFailure. As one can imagine a Future is
exactly the same what was introduced with the Option monad in section 3.1.3. It
can also be used just like any other monadic structure for functional composition so
they can leverage any combined functional capability described so far as well as they
can be freely shared across the application. An illustrative example of the usage of
Future objects in Scala is provided in Alexander (2013a, p. 436-444).

Altogether the global trend, according to Wyatt (2013, pp. 75) is in the direction of
functional reactive programming which leverages the concepts of Futures but also the
handling of large data streams with lazy evaluation as one will see in the next section.
The main advantage with that approach is that one can establish non-deterministic
procedures with unpredictable outcome without violating the functional paradigm
especially the “referential transperancy” discussed in section 2.2. Haller and Som-
mers (2011, p. 48) mention in that respect that data streams in reactive programming
mark specific events where re-evaluation takes place so even large portions of non-
deterministic data can be handled quite efficiently and moreover fail-proof here. It
is clearly stated in Raychaudhuri (2013, p. 281) that any application of concurrency
mechanisms in Scala including Futures must be well elaborated: At first one has to
look at the pieces of architecture where one can work straight-forward with functional
aspects which enable concurrency out-of-the-box e.g. immutable data structures. Af-
terwards non-deterministic elements with actors are selectively added where neces-
sary and as last resort shared, mutable data is used. Before using locks and explicit
threads one should consider the introduction of a transaction-styled communication

57



4. Evaluation of Object-functional Capabilities

with a chain of tasks which all need to be successful in order to complete the whole
procedure. It is again very important to isolate independent tasks in order to cre-
ate lightweight processes and to keep the need of complex error handling at a min-
imum. When working with actors it will most probably be neccessary to introduce
supervisors so that most of the control structures can be moved out of the worker
actors. In the end business logic and error handling should be completely decou-
pled as it is the case in service-oriented architectures. Nevertheless, when working in
distributed environments like in IMPEx one must be extremely cautious in what tech-
nology for concurrent programming is used. Especially RPC-styled communication
which emulates synchronous method dispatch is completely ignoring the scalability
of distributed, concurrent computing and moreover preventing the efficient use of
the above mentioned capabilities.

Nonetheless the event-driven model is certainly a mechanism which needs to be taken
into consideration when elaborating the IMPEx portal architecture. With all the ser-
vice endpoints which need to be exploited the distributed environment can not be
considered as a reliable source of information. There is definitely the need to intro-
duce mechanisms for handling asynchronously acting, remote procedures. In the
service-oriented architecture there is no easy way to guarantee message delivery so
there must be also a capability for automatic retries and special states so the system
knows whether it needs to block other tasks or not. It is important to note that asyn-
chronous messaging and non-blocking tasks should keep any possible delay between
sending and receiving at a minimum by keeping the actor tasks concise, in particular
within service-oriented systems according to Wyatt (2013, P. 84). At the current stage
there is no concrete descision possible for the IMPEx portal since it relies on how the
messaging itself is designed in the architecture. Nevertheless it is highly probable
that web service endpoints need to be exploited with non-blocking communication
mechanisms and error handling is supervised from a third entity like it is concepted
with actors. Sometimes it might be also needed to introduce blocking communica-
tion when service calls are relying on critical data needed for successful continuation.
Maybe a mechanism for creating transactions is needed in that respect. It is up to the
implementation of the access layer to web services from the IMPEx portal perspec-
tive, whether a event-driven application model needs to be elaborated manually or is
already provided through respective web frameworks.

4.3. Side-effects and Basic I/O

As already mentioned in the theoretical chapters in section 2.6 of this thesis one fun-
damental language design pattern available in pure functional programming sticks
out as it allows operations coming from imperative programming: monads. It was
also indicated before that especially two aspects mainly are covered by this abstract
data type: functions allowing side-effects and purely functional I/O operations allow-
ing non-determinism without loosing referential transparency. Moreover, the last two
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sections have revealed more use cases of monads for IMPEx with regard to parsers
and concurrent programming. The reason why side-effects and I/O with monads
is studied in detail in course of evaluation of the base capabilities needed for the
IMPEx portal is obvious: On one hand there are situations arising in programming
where side-effects are needed and cannot be circumvented e.g. when maintaining
a global state for a group of related procedures. On the other hand I/O operations
will be needed when dealing with both web-based and local resources. It must be
noted though that both aspects can be covered by simply exploiting imperative struc-
tures within Scala by using Java libraries. Nevertheless, for the IMPEx portal the aim
should be to stay as pure as possible because it doesn’t seem to be worth to use Scala
as “yet another object-oriented programming language”. All the advantages of the
new programming paradigm seen so far already give a good indication for reasoning
about structured programs flavoured with pure functional concepts.

Although monads are also abstract data types in Scala as they are in Haskell, they are
slightly more versatile. In Scala monads are represented through classes which en-
able generic type constructors easily through type parametrisation and variance (Ray-
chaudhuri, 2013, p. 161). Furthermore there is no need to explicity provide a transfor-
mation mechanism from the applied type to the equivalent monadic type since class
instantiation automatically generates a monadic type out of this given type. The only
operation which needs to be implemented explicitly in Scala is the flatMap method.
This method does the same as the equivalent procedure fmap in Haskell and is a so-
called functor as already discovered. It provides a generic operation which enables
the application of functions on a given type for subsequent transformation to another
type just like the map function. In addition to that flatMap does not only map the
given function on each element of the applied data type to yield a new type - the
resulting type will also be encapsulated in the respective monadic type again. With
this feature one has the ability with monads to wrap a given type into a generic type
to be able to work with it in an abstracted way.

As the monad always returns an expected type it is referential transparent to the scope
outside independently on how the applied type is treated inside of the monadic data
structure. This enables to work in a pure functional environment with imperative
aspects abstracted into a monadic data type as it is stated in Suereth (2012, p.264).
Naturally it depends on the use case whether to aim at implementing monadic data
types into Scala programs or to choose the equivalent imperative way of achieving
e.g. side-effects. Sometimes it may not be desireable to use abstractions of types
in such highly manner but the idea to extend a monad with generic combinators -
methods which provide specific behaviour within this data structure - seem to go in-
line with the assumptions made so far. If there is a way in Scala to implement generic
methods for a set of types having a certain relationship in the class hierarchy it must
be clear that such capabilities will be needed also for enabling complex operations
within the planned domain-specific language for exploiting IMPEx trees and services.
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Chiusano and Bjarnason (2013, pp. 201) gives another motivation for using monadic
data types within Scala by introducing it’s inbuilt “internal domain-specific language
for I/O operations”. With the capabilities described here it is possible to keep I/O
purely functional by using either inbuilt or self-defined monads. The main design
difference compared to equivalent imperative functionality is that functions describ-
ing data are clearly separated from functions interpreting the data. So the only thing
which needs to be taken into consideration when working with monads is that pure
operations must be abstracted away from operations having side-effects. The ex-
amples elaborated in Chiusano and Bjarnason (2013, pp. 240) also show how this is
achieved with object-functional elements in Scala: every method having side-effects,
for example printing to the console, is encapsulated in a predefined data type in the
form of a class. This means that when the “effectful” method is called through a func-
tion, not the method itself is returned but an instantiation of the data type containing
this method. As it is also illustrated there one can easily add new functionality to this
class and it’s instantiations respectively.

Since it is planned in course of IMPEx to implement a domain-specific language for data
access it is a natural conclusion to describe the data model by means of Scala objects
and to provide an interpreting mechanism for the model-specific metadata. With re-
gard to parsers this will be done with functional compositions as already discovered
and depending on whether the focus is on input or output operations there will be
the need to add more compositions for specific tasks. The most important issue will
be here too to keep the “effectful” actions away from the pure functional operations.
It is noted in section 2.5 that one has always to look which data structure is needed
in a particular software solution and how the previously described constraints can
be implemented within the given architecture. It must be clear that within monadic
data structures one has the same disadvantages of e.g. non-determinism and unpre-
dictable results as they are existing in imperative programming but monads them-
selfes are still composable within the purely functional programming paradigm and
therefore they are perfectly embedded in their host language Scala.

The only thing which is additionally needed when working with I/O in IMPEx es-
pecially for capturing inputs, is a mechanism which enables continuation passing style
(CPS). The reason for that lies in the fact that when dealing with input there is some-
times no chance to predict the length of a given input. Therefore there is the need
for non-strict evaluation and more importantly non-blocking operations. Firstly there
needs to be a way to deal with growing data structures without running permanently
into stack overflows and secondly long running operations accessing external data
should by no means block the whole program since they might not return a result at
all in the end. Of course, stack overflows can be prevented in functional program-
ming by using recursive data structures and tail-recursive iterations - this must be
kept in mind when working with monads. Non-blocking operations can easily be
achieved by using the described Futures in the previous section which are monads
by themselfes since they also encapsulate any applied type in a generic type. This
mechanism is absolutely needed when working with e.g. networked I/O. According

60



4. Evaluation of Object-functional Capabilities

to Wampler and Payne (2009, p. 286) it seems that for inputs with arbitrary length
one has to look also at the possibilities with call-by-need evaluation within Scala. Fur-
thermore there is the need for a special data structure which can grow practically
indefinitely on demand. Scala provides this with the Stream data type. In princi-
ple streams can be used to realize functional buffers which read inputs divided into
packets of fixed length rather than reading the whole input at once.

As one can imagine there is yet another problem: How can buffers or streams be
leveraged in Scala without the use of imperative loop control structures which can-
not be composed into pure functional programs? One possibility would be to search
for equivalent functional data structures such as lists which are composable and also
recursive. In fact the only difference between lists and streams in Scala is that streams
do not evaluate their tails until they are actually accessed (Alexander, 2013a, p. 331).
Only their head element is evaluated at any time. Every other capability for accessing
and manipulating elements in a stream is working with the same functional aspects
as with lists. A typical monad for handling arbitrary inputs from an outside scope
would encapsulate this lazy stream into it’s own data structure from where the streams
is then growing depending on the length of the input data. The significant difference
between traditional imperative buffers and streams in Scala is that buffers and their
respective file handles must be closed explicitly when the end of an input is reached
(Chiusano & Bjarnason, 2013, pp. 280). In functional programming like in Scala there
is the possibility for automatic closing of external resources with call-by-need evalua-
tion as described in Suereth (2012, p. 272). Any other action similar to imperative file
handles would not be pure because it would require accessing the internal state of
the monad from the scope outside.

Sometimes it may be needed to create effects in order to maintain an internal state of
the program besides of I/O related effects which rely on external data. This means
one needs a mechanism which provides the same capabilities with pure functions for
internal effects. In fact the approach is practically the same as with external effects -
a monad is used to wrap different data types into one particular monadic type as ex-
plained in Raychaudhuri (2013, p. 158). This is of certain interest within IMPEx since
involvement of different remote procedures does not only need asynchronous mes-
saging mechanisms as already discovered but also stateful operations which delegate
state related information from one entity to another. Note, that monads are already
capable of doing this as it was seen with actors which can persist state internally by
creating a supervised group of actors who are able to share information about their
common global state. They simply mutate different data structures in their internal
scope and return the result in form of e.g. a state monad type to other monads which
may continue changing the state encoded in the monadic data structure. The only
issue which needs to be taken into account again is that operations mutating internal
state must be clearly separated to those operations creating external effects according
to Chiusano and Bjarnason (2013, pp. 265). It will be seen in the next section that it is
not needed for the most use cases in IMPEx to elaborate custom monadic structures
since they are already provided either by inbuilt Scala libraries as it was seen with
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parsers and concurrency mechanisms or are additionally enabled through external
libraries. Nevertheless their internal capabilities must be kept in mind during the
elaboration of technical use cases at the IMPEx portal.

4.4. Scala Web Frameworks

At the current stage of this thesis one has seen a variety of potential capabilities of
Scala that will be needed in course of the development of the IMPEx portal. Yet, there
is one specific glue missing which sticks together the base technologies and makes
them available to the user: A framework which enables communication and utilisa-
tion of all portal-specific functionalities through web-based protocols. It is considered
here that the reader has basic knowledge about the HTTP protocol whose stateless re-
quest/response messaging model was introduced in conjunction with web services in
Topf (2012b, p 15). Furthermore it is assumed that the reader knows about commonly
known Java web architecture APIs. In course of research made for the IMPEx portal
regarding web development libraries which are built on top of the HTTP protocol,
two most common frameworks were discovered which use Scala as a host language:
Lift4 and Play5.

The first framework - Lift was not considered further although having excellent sup-
port for actor-based systems and XML processing mechanisms according to the intro-
duction in Perrett (2011a, p. 6-10). The reason lies in the fact that Lift requires a Java
application server or at least any Java-based software which is able to expose Java
servlets like Apache Tomcat6. Lift only deploys applications as a servlet container so
it is not a standalone solution. Since there is no existing ecosystem for Java based web
applications existing in the IMPEx project the descision was made upon the second
framework Play which in fact is a standalone framework at a first glance with its in-
cluded non-blocking I/O web server called Netty7. The only alternative would have
been to use Java libraries which enable the HTTP protocol such as JAX-RS8 but with
the limited resources given it was not considered feasible to implement the full Web
Service Architecture Stack described in Topf (2012b, p. 14-17) more or less from scratch.

One of the most interesting facts discovered in the first steps of evaluation of the
Play framework was that the structure of applications here is inspired by the famous
Ruby on Rails9 web framework which is commonly known as a fast implementation
and deployment system for web-based Ruby applications. The main focus of such

4Lift web application framework: http://liftweb.net/
5Play web application framework: http://www.playframework.com/
6Apache Tomcat web container and -server: http://tomcat.apache.org/
7Netty client-server web framework: http://netty.io/
8Java API for RESTful Services: https://jax-rs-spec.java.net/
9Ruby on Rails web framework: http://rubyonrails.org/
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frameworks is on a common coding standard for all parts of the web-based software
and fast result delivery rather than the provision of a complex API architecture which
covers a wide range of different use cases going beyond the scope of this project. To
undermine these basic facts one must look at the structure of Play based applications
and how they are built up during a usual implementation phase. As it is stated in Ellis
(2010, p. 10) the deployment time efficiency of Play based applications is much higher
than it is within common Java web frameworks. The reason for that lies in the typical
structure of those application frameworks which tend to have a complex set of layers
for the different parts of a typical web application. These layers expose separated
functionality for implementing e.g. request handlers or view templates. Furthermore
there is an additional layer needed for encapsulation of the web-based application as
such in order to be finally enabled by another separated entity - a suitable Java based
HTTP server for so-called Java web archives (Hilton, Bakker, & Candeo, 2013, pp. 6).

In comparison to that, the Play framework provides every needed capability for mod-
ern web-based applications through one layer and also includes a Netty HTTP server
as mentioned before in it’s standard installation. Furthermore it ships an own Scala
Build Tools (SBT) based console for compiling, testing and deployment without the
need of additional software except of a Scala compiler of course. Especially in the
IMPEx project there is the need to be flexible for quick changes and there must be
an efficient way for testing, staging and operation of applications. This is a funda-
mental cornerstone for the successful realisation of the project goals. The high degree
of RTD requires capabilities to serve the community with up-to-date software for ef-
ficient evaluation and integration of instantly needed modifications. Both Play and
Ruby on Rails are equipped to overcome the most common challenges of modern web
applications like big data handling, concurrent processes, efficient ways of persisting
data, full support for client-side HTML5 technologies and zero-downtime deploy-
ment strategies (Alexander, 2013b, p. 71). The latter two challenges are the most in-
teresting from the authors point of view since efficient client-side technologies have
revolutionised the market and a shift of paradigms with regard to task distribution in
a client-server architecture. Furthermore automatic deployment strategies of applica-
tions running on top of the JVM have not only become more efficient in the evolution
of Java, they also do not require that production software is taken offline for the time
of updating. This is seen as crucial for modern web-based applications which are
frequently extended and updated according to the users need.

Another advantage of Play is that Java and Scala can be intermixed throughout the
whole software whereever it is needed. This opens a lot of possibilities since all exist-
ing Java libraries can also be used in the context of web-based applications. Together
with the fact that a “full-stack framework” is provided with database connectors,
the integrated web server and an extended I/O API including Akka features can
be practially used for any enterprise application (Typesafe, 2013). Moreover it can
also be integrated easily in existing Java applications, since Play also provides a pos-
sibility to export an application into a servlet container if needed. Interestingly the
Play application architecture focuses specifically on a clean REST-API and does foster
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bottom-up development by beginning with the HTTP interface of an web-based ap-
plication. This basically means a developer starts with a Play application by defining
the routes and respective HTTP methods (GET, PUT, POST, DELETE) of the planned
software.

This is in-line with the planned implementation roadmap of the IMPEx portal as one
will see later in the user requirements definition. Moreover, according to Hilton et al.
(2013, pp. 68) “URL-centric design” is considered a good style of coding because it
helps to perfectly adopt the HTTP architecture without breaking its stateless nature.
It is also mentioned here that traditional web-based Java applications lack of this be-
cause they produce REST-based HTTP interfaces with a lot of payload e.g. in GET

requests. This may lead to URL structures which are not stateless at all and depend-
ing on specific content of GET parameters. In fact Play helps the developer to imple-
ment a more concrete resource-oriented architecture where each defined HTTP route is
acting and existing as a resource on it’s own decoupled from other provided function-
ality. This makes the whole application much more composable and pure functional
programs can easily be translated to the web when following the paradigm of REST
(Reelsen, 2011, p. 9).

On top of the functionality provided for the transport layer, Play embraces the Model-
View-Controller (MVC) pattern which is a common design paradigm for web-based
applications. A developer designs the controllers and models of the application and
finally provides user-relevant information in views. The controller handles the re-
quests coming from the client and calls a respective model which is then transformed
to display the requested information in the view (Petrella, 2013, pp. 30). In Play the
defined HTTP routes are always directing to a static controller object and a respec-
tive method which provides a specific Action type to the client. Action types are
implemented with actors of the Akka library which are working asynchronously on
incoming requests as it is naturally required by the HTTP protocol. The Action type
is therefore also monad which can be composed with other actions or be encapsu-
lated by generic actions needed in the controller such as e.g. filters, validators or
manipulators of incoming requests before they are handled by the wrapped action.

A controller in Play does nothing more than dispatching the request and delegating
it to a respective model e.g. a Scala class which is then extracted in the views of the
web application. These views can be either provided by an inbuilt template engine
based on Scala or the bare REST interface can be used by JavaScript MVC frame-
works for example. Routes can be also called everywhere in the controller code since
after registration of a route at compile time a respective access method is implicitly
included in Play. Note that in contrast to typical Java based web applications both
routes and views of an application are also type-safe because the content is checked
explicitly at compile time. As one can imagine a view may include conditions, iter-
ations or method calls in Scala syntax embedded into HTML markup and those are
not checked e.g. when using traditional view templates in other Java web frame-
works (Petrella, 2013, p. 59). Moreover, the application configuration and the plugin

64



4. Evaluation of Object-functional Capabilities

settings of a Play application are type-safe because their syntax is checked at com-
pile time too which leads to the assumption that the Play framework is particularly
focused on fail-proofness throughout the whole application like it’s host language
Scala.

Of course it must be also noted here that the fast evolution of client-side technologies
including e.g. client-side AJAX calls and different HTML5 capabilities have brought
a change in the design of MVC frameworks since a server must be able to handle
different streams of data the client is requesting and consuming in parallel (Hilton
et al., 2013, p. 351). Limitations were for example the vast consumption of resources
since every request in pure Java-based web applications created an additional thread
and memory consumption increased drastically with the amount of clients connect-
ing to the server. One has already seen that asynchonous code in Scala tends to re-use
threads from a thread-pool and they are never blocking each other. It is stated in
Brikman (2013) that especially when requests are taking longer time to respond a
“thread-per-user” policy is not scaling up properly and costing a lot of performance
under heavy network load. The non-blocking I/O of Play has also some advantages
when it comes to reactive programming where the client subsequently receives results
coming from the server which are only preceded by a single request before. The
framework can provide stream processing rather similar to Scalas basic I/O features
described in section 4.3 where the server is continously pushing data and automati-
cally closes the resource when the end of data is reached. So there is no need for the
client to ask continuously whether a result is already available to the request or not.

In fact the HTTP body parser of the controller actions mentioned before is an inte-
gral part of this stream processing. It does not matter if the request is fully parsed
by the action, it is implicitly “existing” all the time and its payload is automatically
recognised and typed to e.g. XML, JSON or plain text by the Play framework. It
must be noted here that Play provides a similar versatile syntax for processing JSON
documents like it was discovered with XML in Scala. Play also eases the efforts
needed to transform JSON objects to Scala objects and vice-versa. Responses from a
Play framework server are encoded into well-known HTTP status codes before being
dispatched, such as OK (200), NOT FOUND (404) end even NOT IMPLEMENTED (501)
which is a dedicated response action itself. With this rather simple mechanisms to
work with the HTTP protocol the developer is explicitly motivated to build applica-
tions which embrace asynchronous messaging and complete statelessness. Moreover
this basic approach goes in-line with the cornerstones of functional programming and
Scala respectively.

For the IMPEx portal it will also be needed to embed web service calls in the controller
actions which delegate respective user requests to a remote server and forward the
results either unchanged or transformed back to the user. In that respect it will be also
needed to encapsulate asynchronous calls within the controller object’s methods. In-
terestingly, Play also uses Akka features as a basis here by applying the Future type
introduced in section 4.2.2. This Future type encapsulates the response from the
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web service call and can be mapped onto any subsequently used variable. Usually a
call involving a Future is wrapped into an async {..} block in Scala or a special
Action.async{..} type in Play which identifies an special area where results of
e.g. web services are to be used. This area is not blocking in both cases, so Scala does
in fact create an own thread here for handling the remote data without blocking the
original thread created by the originating request (Petrella, 2013, p. 196). This is an ef-
ficient way to work with remote web services because Play is able to suspend threads
which are currently not used when making additional remote requests during execu-
tion of a local action. This particularly helps with the scalability of the application.
Brikman (2013) also mentions that altogether it turns out that Play is event-driven and
not thread-driven which in the end distinguishes Play from Ruby on Rails but also from
Java web applications using servlets.

The advantages were already clearly described in this chapter especially with regard
to concurrent programming nevertheless there is one actual topic which needs to be
explained in more detail here, because it might be needed for the IMPEx portal: Web-
Sockets. WebSockets are a currently developed HTML5 standard which allows to keep
HTTP requests open without immediately closing it after an initial response was de-
livered by the server (Ellis, 2010, p. 171). The advantages with that feature is that the
server can use this open connection for subsequent communication without further
requests by the client. The server is able to push information to the client which might
be helpful when working e.g. with workflows where clients usually wait longer for a
responses or subsequently receive a chain of responses. Here the client does not need
to poll at the server frequently to recognize when the services are finished, the server
just publishes the information as soon as it is available. Altogether one sees that not
only Play goes in the direction of event-driven applications, the well elaborated web
standards also do, which is a rather promising aspect for the sustainability of this
framework and its usage within the IMPEx project.

To conclude all the functionalities provided by the the HTTP protocol one must look
at the so-called HTTP-session which enables the developer to transport information
over serveral requests e.g. through the HTTP-header with cookies stored on the client-
side. So in fact, it is possible to encode state into the client-server communication.
This feature can be used to “group” subsequent requests into a user session to be able
to recall information which was already sent on the server-side for example. Play
does not explicitly force such a functionality because it would not go in-line with
the promise to provide a completely stateless interface. If there is a need to persist
state it must be completely separated from stateless procedures in Play according to
Reelsen (2011, p. 35). This is also required by the underlying Akka features since their
monadic data structures would loose their capability to be composed when there is
state encoded outside of the actions directly triggered by the client. In fact the same
paradigm as one already knows from monads comes into practice here which is simi-
lar to continuation passing style (CPS). A cookie is used as a key-value store in the Play
framework to persist small amounts of data within an user session and every request
is transporting this data from the client to the server through the HTTP-header. This

66



4. Evaluation of Object-functional Capabilities

means that the client’s session does not share any state with the server as opposed
to common Java based frameworks according to Ellis (2010, p. 32). Here a cookie
stored on the client-side is only used as an identifier to access session data stored on
the server-side. The reason for the different approach at the Play framework lies in
the fact that it is more clean with regard to the stateless REST interface enforced here
to use a so-called “share nothing” policy between server and client (Reelsen, 2011,
p. 250). Note that this cookie is additionally signed so that it cannot be compromised
on the client-side.

In addition to that Play provides another cache called flash scope, which is able to
cache data only for one subsequent request. This might come in handy when imple-
menting REST interfaces where scalability plays a big role because nothing “volatile”
is stored at the server. The client can basically communicate with different servers in a
cluster and still transport information from one request to an other (Hilton et al., 2013,
p. 42). Nevertheless, sometimes it is needed to persist data on the server not only for a
given timeframe and a specific user but for some more general purposes. As one has
already discovered Scala comes in handy when working with domain-specific mod-
els so the general functionality provided by Play to save objects to databases is also
dominated by aspects evaluated in section 4.1. Again it is needed to separate descrip-
tive domain-specific data and functionality processing and using this data. Typically
this is done with data access objects (DAOs) which interprete the models encoded into
simple objects of the host language. In the case of Scala such models are often repre-
sented by the compact Scala case classes and Play provides DAOs which can directly
map those classes into respective database implementations including a variety SQL
and NoSQL solutions. It is still not known up to now whether it is needed in the
future to persist data at the IMPEx portal but the capabilities need to be kept in mind
especially when elaborating the data model representation within Scala.

As conclusion to the first evaluation of Scala capabilities which make the language a
versatile companion for web development it is to say that everything needed for the
IMPEx portal from the basic perspective is not only available but also fully conform-
ing to the pure functional paradigm. One has seen that monads are used throughout
many extended features of Scala and they are able to maintain the purity of func-
tional aspects such as immutability and referential transparency. Some of the aspects de-
scribed here with regard to domain-specific languages, concurrent programming and
I/O seem quite complicated as they require background knowledge reaching back to
fundamental functional programming paradigms. Nevertheless the final evaluation
of Scala web frameworks in this chapter has shown, that these aspects are smoothly
integrated in an efficient way with the Play framework. This framework takes over
functional concepts of Scala described here which are needed in web-based applica-
tions and efficiently makes them available to the developer without the need custom
implementations.
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In accordance with the basic motivation of this thesis described in section 1.1 and
recent discussions within the community of IMPEx a clear direction was established
on what the IMPEx portal must and should provide to the broad scientific and ed-
ucational community outside of IMPEx. Although there are some limitations on the
degree of client- and server-side integration of functionalities, since the actual inter-
tool communication via the SAMP protocol was not widely recognised as drawback.
Nevertheless a significant portion of the foreseen portal architecture will be able to
use the advantages provided by object-functional languages like Scala and JavaScript.
One particular aspect was seen as most important, namely the efficient handling of
domain specific languages (DSLs) in correlation with parsing and processing of XML
documents within a service-oriented architecture as it was evaluated in chapter 4.

The following sections will provide a complete path through the software engineering
process, where at first the concrete purpose and the aims will be formulated which
were previously agreed upon by the project management commitee (PMC)1. As a sec-
ond step the author will look at the existing ecosystem of IMPEx including it’s data
model and web service interfaces which were already described in Topf (2012a) and
remark possible deviations from the originally projected design. The subsequent step
will be the definition of user- and technical requirements as well as the portal archi-
tecture which are created in an iterative process and in close cooperation with the
IMPEx community. During the design phase and its projected engineering process of
the IMPEx portal the author will select fractions of the foreseen software where the
previously described functional aspects of Scala and JavaScript will be evaluated by
real-world measures in the IMPEx project. Furthermore, they will be cross-linked to
the original ideas and advantages of pure functional and object-functional program-
ming described so far.

1The elaborated user requirements in this thesis were presented and accepted at the IMPEx technical
meeting in Toulouse, September 20, 2013

68



5. The IMPEx Portal

5.1. Purpose and Aims

The IMPEx portal is an official part and deliverable of the work package 5 Outreach
and Dissemination (ODis). The idea behind this work package at the time of project
creation was to on one hand disseminate the achievements and results of IMPEx
through the planetary science community in a proper way and on the other hand
to educate newcomers (e.g. students) in the scientific fields of magnetospheric- and
plasma physics, where the simulation models as well as the observational data pro-
vided by IMPEx are of significant value. All the functionalities of IMPEx should be
promoted at a central access point suitable for the different target groups. Although
IMPEx already has a website2 with an integrated tool page the User Advisory Board
(UAB) of IMPEx which is comprised of external experts in the respective science- and
technology fields has critised the current way IMPEx delivers it’s services and tools
to the community.

The reasoning behind their criticism was that the current way the tools and services
are provided does not emphazise the particular role each specific service has in the
IMPEx environment nor does it show a coherent project environment. It was identi-
fied as an important step that after most of the system is clearly defined now there
must be reference implementations of the data model and web services propagated
by the simulation databases provided to the community. A potential user of the sys-
tem must be able to identify those new capabilities independently if the services are
integrated in one system or distributed among the participating institutions of IM-
PEx. This is not the case at the moment so in the group of the UAB there were two
particular proposals for changes and improvements which were taken as main direc-
tion to go for the implementation of the IMPEx portal:

• Development of a modern and dynamic map of all tools and services available
with short and precise background information, including statistics of the pro-
vided content (datasets or web service methods).

• Provision of a graphical representation of the path the data takes through the
system, emphasizing science cases and including tutorials on integration of IM-
PEx web services and the IMPEx data model.

After evaluation of the feedback and recent discussions within the project manage-
ment commitee (PMC), the IMPEx consortium came to the conclusion that there
needs to be more focus on the continous monitoring of usability throughout the IM-
PEx infrastructure. As for now the IMPEx website does not provide a clear view
on the capabilities primarily delivered by the project. The user gets the feeling that
IMPEx is about extending existing tools such as the participating 3DView Multimis-
sion tool, the “Automated Multi-Dataset Analysis tool” (AMDA) and the “Cluster
Web tool” (ClWeb) which are building up the core of the tool- and resource layer pre-
sented in Topf (2012a, p. 25). Although a significant portion of the project’s resources

2IMPEx project website: http://impex-fp7.oeaw.ac.at/
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is actually invested in the update of these tools to work with IMPEx capabilities,
the background web services and moreover the definition of the IMPEx data model is
the key goal of the IMPEx project. The currently existing service interfaces and data
model instances are in fact reference implementations for a Virtual Observatory (VO)
in the field of plasma physics which should be promoted as such. It is concluded that
this was particularly critizised by the UAB because the IMPEx website promises the
establishment of an “interactive computational framework” (see: The IMPEx Consor-
tium, 2013) where the user might indeed expect a concrete single entry point to the
system with all new functionalities available at first glance.

This naturally leads to the question which was asked by the community whether it
would be possible to make IMPEx web service and simulation database access avail-
able at one distinct place promoted via the IMPEx website. From here the user could
decide on and select the needed datasets and functionalities for his/her specific re-
search purpose. The user should be able to either delegate selected datasets via the
SAMP protocol to any tool capable of communicating via well elaborated IVOA stan-
dards or aquire specific datasets directly for offline processing. An appropriate guid-
ance and documentation through the whole system must be available for the user.
Furthermore the IMPEx project must take care of the different operating systems and
more importantly the different browsers and devices which will be used by the com-
munity since it is currently not practised adequately. 3DView for example can only be
used within a Java Virtual Machine (JVM) and AMDA is only working properly on
desktop computers as well. Of course the limitations can not be solved completely by
the provision of a portal but at least basic functionality should be available to a wide
range of devices for example.

In addition to that the dedication to educational and public outreach work in the field
of plasma physics despite of being welcomed by the IMPEx community should be
more emphasised in the project. In fact there was little progress in those fields since
the availability of IMPEx services in the current stage of development at the level of
tools is not optimal for the public presentation of the particularily implemented ca-
pabilities in this project. Especially the start of active usage within student seminars
with the current tool-set is prevented due to the relatively steep learning curve in ef-
ficient operation of their specific functionalities3. Altogether the path for the IMPEx
portal was clearly set by the PMC trough various discussions and processing of feed-
back from the UAB as well as the initial definition and allocation of resources in the
Description of Work (DoW) of the IMPEx proposal. One important issue was raised by
the PMC after definition of the principle goals of the IMPEx portal: The developed
system should not duplicate any of the data analysis and visualisation capabilities
already provided by the tools of IMPEx. The focus must be on provision of auxiliary
services which are either not directly available through the tools or more importantly
not existing so far. To name one important aspect here, a common registry of IMPEx
services is still not in operation which would add a more integrated interface to all ex-

3There was recent progress in usability shown with the newest versions of AMDA and 3DView,
which were presented at the IMPEx technical meeting in Toulouse, September 20, 2013.
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isting IMPEx services following the Virtual Observatory (VO) paradigm as described in
Topf (2012a, pp. 12). The complete user requirements definition, respecting the goals
and general purpose of the portal as described, but also the mentioned constraints in
functionality and technical requirements must be therefore established on top of the
existing infrastructure.

5.2. User Requirements

As already mentioned, there were several internal discussions during this year what
the portal could finally provide in its user interface. Still, there are no concrete defi-
nitions except what was written preliminary in the Architectural Design Definition. In
addition to that, the UAB Meeting and the related UAB Questionnaire gave an indi-
cation on what is needed from the community perspective. In course of preparations
for the IMPEx technical meeting in Toulouse the user requirements described here
were captured from all available documentation so far.

Three main cornerstones were elaborated in course of these investigations which give
a rough overview of these user requirements and the projected implementation work:

1. Development of a main entry point to the IMPEx project resources:
• Focus on visual, intuitive and explanatory features

• Provision of a map through “the forest of applications”

• Information on available models and scientific assumptions made etc.

• Different entry levels and centralised access to simulation databases

2. Basic workflow integration:
• Built on top of the available web service interfaces (IMPEx protocol)

• Possibility for automatisation of recurring processes

3. Project Documentation:
• Access to important documentation wia website

• Documentation for non-expert users

• Science Cases visualisation

This thesis is naturally focused on the underlying architecture for provision of the
first cornerstone and further integration into more complex operations of the second
cornerstone. It was already clearly shown in chapter 4 which basic capabilities need to
be available to achieve these projected goals of the IMPEx portal which were already
known from the beginning of the project: XML parsing, processing and consequent
distributed I/O with web services using the obtained metadata from the XML trees
for data access. However, at the current stage a final roadmap for development must
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be determined by a concise classification and priorisation of the user- and technical
requirements. Furthermore there must be restrictions on the functionality in order to
fullfil the previously described aims in the given time without duplicating work.

The most important constraint on the capabilities from the users perspective is based
on a remark coming from the IMPEx community which was covered in the Archi-
tectural Design Definition: “The purpose of the IMPEx portal is to provide users not
familiar with IMPEx tools an additional way to choose simulated or observed data of
interest and send them to an IMPEx tool through a SAMP hub”. This basically means
that the user should get the information needed where to go for working on a specific
IMPEx science case including basic capabilities to select, view and download portions
of simulation or observational data. Therefore the IMPEx portal must only act as an
enabler for more complex operations which can be conducted by 3DView, AMDA or
ClWeb. In the opinion of the author this also reflects in which direction the IMPEx
project should go for promoting the underlying SPASE-based XML data model and
the web service interfaces. The IMPEx portal should also make its domain-specific re-
source model and remote service connectors transparent to the scientific community
for further integration into other tools and extension of distributed database access
through the IMPEx infrastructure. Both requirements tightly fit into the assump-
tion of the author that a single gateway to a complex service-oriented architecture
increases the usability and extendability of the system beyond the projects lifetime.

The following sections will summarize all aspects required to fullfil all these concre-
tised goals and constraints from the IMPEx community. The requirements will be
basically prioritised in the categories Must (M), Should (S) and Could (C) depending
on the decision made by the IMPEx-PMC. It will be also traced in the user require-
ments from where the requirements come in order to be able to clarify open issues
during the architectural design with the respective stakeholder.

5.2.1. Search Capabilities

The search capabilities are representing the core of the portal since they are needed to
make the metadata from the IMPEx data trees available in a suitable form which is
most useful for the projected tasks of the user. This fact also implies that the search
capabilities must be able to identify the web service methods available for the searched
and selected dataset of a particular tree. It is important to note that the following
requirements are building up the basement for all other functionalities explained in
this chapter.
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Number UR-1.1
Title Consolidated IMPEx data tree
Priority M
Origins(s) IMPEx team Graz
Type Interface requirement
Description In order to be able to visualise the dynamic view of the IMPEx

data trees in the way it is described in section 5.2.2 they must be
consolidated into one single IMPEx data tree. The data structure
used at the portal for this combined tree must be capable of the re-
arrangement functionalities depicted here. It is commonly known
that the underlying SPASE data model and its flat hierarchy is ba-
sically capable to be stored in one single valid XML document.
The IMPEx data tree must include the metadata from the SMDBs,
AMDA and CLWeb. The default arrangement of the tree must dis-
play the category Data Provider at the top level including informa-
tion about the contained Data Type. The user interface should dis-
play the tree as an IMPEx map where further tool and service usage
is indicated with an appropriate visualisation.

Comments It must be noted here that the observational data trees from AMDA
and ClWeb do not comply with the used SPASE data model for the
SMDBs described in Topf (2012a, pp. 30).
It is considered by the IMPEx-team that the observational datasets
will be transformed to comply with the SPASE standard in the fu-
ture as it was done with the VEX-MAG datasets in Topf (2012b,
pp. 32). At the current stage the IMPEx portal must include a way
to be able to understand the current proprietary metadata format
of those tools. The consolidated IMPEx data tree should also be
available through a general purpose interface for other applica-
tions in XML format.

Related UR(s) UR-1.2, UR-2.1 and UR-6.2

Table 5.1.: UR-1.1 Consolidated IMPEx data tree
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Number UR-1.2
Title Search for IMPEx trees and services
Priority M
Origins(s) IMPEx-PMC
Type User interaction
Description The dynamic view of the IMPEx trees and services must be up-

dated automatically depending on predefined filters and user
queries. This means, the interface must display the trees and ser-
vices in a form which is capable of re-arrangement based on the
following query parameters:
• Target Name: Mars, Venus, Jovian satellites, etc. . .

• Resource Type: Observational or simulated data

• Data Provider: LATMOS, FMI, CDPP, etc. . .

• Mission Name: Venus Express, MAVEN, etc. . .

• Physical Quantity:
– Magnetic field

– Plasma ion moments

– Plasma electron moments

– Plasma ion spectrograms

– etc. . .
In addition to that a to be determined set of elements in the pro-
vided data trees should be available for full-text search to the user.
These need to be identified in the architectural design based upon
usability but also feasability within the scope of portal develop-
ments.

Comments The available IMPEx web services are tied to a specific Data
Provider and will be therefore not directly involved in the filter and
search mechanism described here. The related web services will be
displayed in every search result depending on the given parame-
ters depicted above associated with the respective Data Provider.

Related UR(s) UR-1.1 and UR-2.1

Table 5.2.: UR-1.2 Search functionality for IMPEx trees and services
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5.2.2. Visualisation Capabilities

The most important aspect of the visualisation capabilities will be the display of all
resources available through the consolidated data tree and its search capabilities de-
scribed in 5.2.1. Furthermore it will be needed to enhance the usability of available
tools, services and the data trees by providing appropriate documentation on how to
use these IMPEx capabilities. Together with the requirement fo a statistical overview
of the available services the documentation are considered as secondary features of
the IMPEx portal.

Number UR-2.1
Title Dynamic provision of IMPEx trees and services
Priority M
Origins(s) IMPEx-UAB
Type Autonomous system activity
Description The IMPEx portal requires a service which is able to display ev-

ery attached observational and simulation database dynamically
depending on their availability. Furthermore all available IMPEx
web services must be displayed accordingly so that the user im-
mediately recognises which functionality is available for a specific
selected dataset in the given database. All relevant metadata for
e.g. particular simulation runs or instruments must be displayed
in correlation to all available physical quantities of the datasets.
The interface must also define all input and output parameters as
well as the required formats needed for communication with the
web services. The IMPEx tools AMDA, ClWeb and 3DView must
also be embedded accordingly in this dynamical IMPEx map to
clearly show their particular purpose.

Comments There is already a service existing called the WS scoreboard which is
maintained by the team of ClWeb*. It displays all URLs of the XML
data trees and WSDL descriptions of the IMPEx infrastructure and
indicates their availability and development status.
The service at the IMPEx portal must have a more suitable format
of representation for the community outside of the IMPEx team by
only providing the most relevant information for potential users.

Related UR(s) UR-1.1, UR-1.2 and UR-3.2
*WS scoreboard overview website: http://clweb.cesr.fr/

webservice.html

Table 5.3.: UR-2.1 Dynamic provision of IMPEx trees and services
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Number UR-2.2
Title Documentation of IMPEx services
Priority S
Origins(s) IMPEx-UAB
Type User interaction
Description An appropriate documentation of the available resources and ser-

vices should be accessible in the IMPEx map at any time. It would
be of advantage to place links to documentation views in close
vicinity to the respective resource. The documentation should
include on one hand tutorials and manuals for all IMPEx por-
tal features and on the other hand technical documentation about
the underlying data model and web services. All explained and
described capabilities should be intuitive and additionally docu-
mented with step-by-step dialogs.

Comments The portal should include an IMPEx cookbook in the future which
translates the IMPEx science cases into hands-on tutorials for in-
troduction to the combined usage of the IMPEx portal, AMDA,
ClWeb, 3DView and related external tools. It should be also con-
sidered for the future to provide a certain degree of automatisation
in the steps needed to accomplish science cases through workflow
descriptions as they are used in the Taverna workflow engine*.

Related UR(s) UR-5.2
*Reference implementations for workflows with IMPEx web ser-
vice communication based on Taverna are provided by FMI:
http://www.myexperiment.org/groups/1150.html

Table 5.4.: UR-2.2 Documentation of IMPEx services

Number UR-2.3
Title Statistics of IMPEx services
Priority S
Origins(s) IMPEx-UAB
Type Autonomous system activity
Description The IMPEx map should inhabit a place where statistics on the avail-

able resources are displayed in any possible configuration of the
dynamic view. These statistics could for example include the num-
ber of simulation runs available for a specific target, time ranges of
observational data for a specific mission and similar measures.

Comments This requirement is strictly tied to the final representation of the
user interface because there must be a space preliminary reserved
for the statistics until the exact parameters are known.

Related UR(s) UR-2.1 and UR-5.2

Table 5.5.: UR-2.3 Statistics of IMPEx services
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5.2.3. Communication Capabilities

The communication capabilities basically cover all connections to remote data sources
and web service endpoints available in the IMPEx infrastructure. Together with the
functionality of inter-tool communication on the client-side, the requirements de-
picted here match with the originally elaborated requirements for the whole IMPEx
infrastructure in (Topf, 2012a, p. 25). Nevertheless the functionality of the IMPEx
portal must represent a simplified and reduced set of the originating infrastructure
capabilities elaborated in course of the project.

Number UR-3.1
Title Delegation of portal data selections
Priority M
Origins(s) IMPEx-PMC
Type Interface requirement
Description In order to be able to use data selections from the IMPEx portal ac-

quired through data tree search and web service exploitation there
must be a possibility to delegate these results to either AMDA or
3DView for further processing and visualisation. This must be ac-
complished by a SAMP hub which can be started from the IMPEx
portal through the JSAMP* toolkit and where other tools can regis-
ter to if they have a SAMP hub discovery mechanism implemented
in their capabilities.
It will allow the portal to publish data in the VOTable format over
the hub to all connected tools. It should be pointed out at the IM-
PEx map which tool can continue using a specific data selection
made by the user via the SAMP protocol.

Comments The SAMP protocol and architecture are further described in Tay-
lor et al. (2011). It is noted there that the hub mechanism is not de-
signed for excessive throughput of data which must be taken into
account at every possible use case of SAMP at the IMPEx portal.
Besides of providing an own SAMP hub, the IMPEx portal should
be able to connect to Java applications where a hub mechanism is
already integrated such as TOPCAT.**

Related UR(s) UR-2.1 and UR-4.2
*JSAMP, a Java-based SAMP hub implementation: http://

software.astrogrid.org/doc/p/jsamp/1.3-3/

**TOPCAT, Tool for OPerations on Catalogues and Tables, an
IVOA based viewer and editor for table-based data: http://

www.star.bris.ac.uk/~mbt/topcat/

Table 5.6.: UR-3.1 Delegation of portal data selections
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Number UR-3.2
Title Exploitation of IMPEx services
Priority M
Origins(s) IMPEx-PMC
Type Interface requirement
Description The user interface of the IMPEx portal must be able to communi-

cate with all web service providers like AMDA and ClWeb for ac-
cessing observational data as well as LATMOS, FMI and SINP for
enabling the access methods to simulated data. All defined and
fully operational methods must be displayed depending on the ac-
tually selected resource since every method needs a ResourceID
from the SPASE-based XML data trees as input.
The following operational method must be included in the portal
which is available from each SMDB:
• getDataPointValue

The following operational methods must be made available from
FMI and LATMOS only:
• getDataPointValue_Spacecraft and getFieldLine

• getMostRelevantRun

• getFileURL (only LATMOS)
The following operational methods must be made available from
SINP only:
• calculateDataPointValue

• calculateDataPointValue_Spacecraft

• calculateFieldLine
Ultimately the following methods must be made available from
AMDA and ClWeb:
• getObsDataTree

• getParameterList (only AMDA) and getParameter

• getTimeTableList and getTimeTable

Comments It must be noted that the SMDB methods also require an URL to
a respective VOTable file as input, providing e.g 3D coordinates
for respective calculation of physical parameters. There is a ref-
erence implementation of a suitable auxiliary service generating
VOTables maintained by FMI* which should be included at the
portal too.

Related UR(s) UR-2.1 and UR-4.2
*IMPEx-SMDB PHP web service: https://github.com/

IMPEx/IMPEx-SMDB_php_webservice

Table 5.7.: UR-3.2 Exploitation of IMPEx services
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5.2.4. Processing Capabilities

The processig capabilities of the IMPEx portal itself are preliminary limited to two major
functionalities since the overall goal as described in the introduction of this chapter
is not to duplicate functionality of AMDA, ClWeb or 3DView. These tools are able
to analyse and visualise data in 2D and 3D environments with capabilities suited for
fully accomplishing the IMPEx science cases such as the example for “Venus magne-
tosphere studies” depicted in Topf (2012a, p. 17-20). The IMPEx portal therefore only
provides download of selected datasets and the management of time- and coordinate-
tables needed for web service exploitation, besides of delegation described in the pre-
vious section.

Number UR-4.1
Title Download of portal data selections
Priority M
Origins(s) IMPEx-PMC
Type User interaction
Description In addition to delegation of selected datasets the IMPEx portal

must include a possibility to download the data obtained via web
service communication in the VOTable and netCDF format de-
pending on what was chosen by the user beforehand.
Since a request through remote web service communication could
take longer to respond the IMPEx portal should provide a data box
in the IMPEx map of resources and services where an incoming
response will be announced to the user and made available for
download (and/or delegation).

Comments It is not clear at the stage of the requirements engineering phase
whether the netCDF format structure needs to be natively under-
stood by the IMPEx portal or it just needs to provide URLs point-
ing to the resulting files of a web service call for download. The IM-
PEx portal should in any case favour the VOTable format because
this format will also be used for the SAMP communication and one
common format will save time in the implementation phase due to
decreased complexity.

Related UR(s) UR-2.1 and UR-4.2

Table 5.8.: UR-4.1 Download of portal data selections
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Number UR-4.2
Title Time- and coordinate-table management
Priority M
Origins(s) IMPEx-PMC
Type Interface requirement
Description Time- or coordinate-tables in the VOTable format must

be provided by URL-links in order to enable web service
exploitation, so the portal must also offer an interface for
uploading VOTables from the users desktop. These files
should be placed in a server-side data box displayed in
the IMPEx map for further usage in web service calls or in
SAMP hub delegations to the IMPEx integrated tools.
The IMPEx portal must also provide a possibility to link
generated VOTables from one service on the IMPEx map
together with a ResourceID from the consolidated data
tree to another service available on the IMPEx map.
Furthermore there should be a possibility given to cre-
ate timetables from scratch by either entering parameters
and data tables manually or by uploading e.g CSVs in
ASCII format for automatic transformation. These man-
ually created VOTables should be also made available
through URLs in the data box from where they can be fur-
ther used.

Comments Only the requirements for uploading VOTables and map-
ping of generated VOTables to URLs must be taken into
account in the first iteration of the implementation phase
because they are mandatory for other requirements de-
noted with Must in this chapter.
The upload functionality in particular was mentioned in
internal discussions because it will enable a variety of use
cases where the user might want to quickly obtain inter-
polated magnetic field values of a specific target by using
locally stored coordinate-tables for example.

Related UR(s) UR-3.1, UR-3.2 and UR-5.2

Table 5.9.: UR-4.2 Time- and coordinate-table management
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5.2.5. User Interface Requirements

The user interface requirements are primarily settled around the exact definition of
the previously mentioned IMPEx map and how the portal functionality will finally
be displayed to the user. Furthermore the requirements described so far demand an
integrated functionality for saving intermediate results on the server during a users
working session. As already mentioned in the introduction of this chapter, the display
must be as intuitive as possible since the portal should be designed for a broad range
of differently skilled and trained users. Therefore there should be a way to adapt
the views within the IMPEx map in order to make it at most useful for specific users
entering the IMPEx portal as it was also demanded by the IMPEx-UAB.

Number UR-5.1
Title User sessions
Priority M
Origins(s) IMPEx team Graz
Type Autonomous system activity
Description At first it must be possible to have a user session enabled once the

IMPEx portal is opened in the browser. This capability will enable
the user to save selected resources or results from web service calls
in a temporary cache until the browser is closed again or after a
specific predefined timeout. The cached information must also in-
clude any manually created file in the VOTable format during a
user session and be saved in the data box on the IMPEx map as pre-
viously described in section 5.2.4.

Comments In the first iteration of the portal developments the temporary
cache should be implemented as simple as possible to save re-
sources in the engineering phase. This means that an unique user
should only be identified as such based on a negotiated session
identification between client and server without further creden-
tials needed. For the future it should be considered to integrate
a fully operational user management system where user accounts
and related data selections are persisted on server-side indefinitely
and independently of a particular user session. The user will then
be able to return to a working session at any time in the future with
a login-based authentication scheme.

Related UR(s) UR-5.2

Table 5.10.: UR-5.1 User sessions
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Number UR-5.2
Title User interface arrangement
Priority M
Origins(s) IMPEx team Graz and IMPEx-UAB
Type Interface requirement
Description The portal must include general information about the project as

well as thematically grouped resources which are made available
through the IMPEx project as mentioned in section 5.2.1. The visu-
alisation of IMPEx services and the consolidated data tree contents
must be configurable over predefined filters and represented by
a virtual workbench or a thematic map in any configuration de-
picted in section 5.2.2.
The visualisation of datasets should not be a primary goal, there
must be a focus on a general purpose access to selected resources.
Nevertheless it is desired to have statistics displayed for the avail-
able datasets in a topical structure as well as suggestions on how to
visualise the selected datasets with IMPEx tools suchs as AMDA,
3DView and ClWeb. Furthermore, there should be a place at the
user interface in the future where external tools are advertised too
which can communicate with the IMPEx portal through the SAMP
hub such as the IVOA-tool TOPCAT*. The virtual map must be
able to show paths and indications where selected datasets can be
used in the IMPEx infrastructure. There should be also suggestions
on how to use the underlying IMPEx data trees and web services
for third-party software.

Comments A typical use case of the IMPEx map is shown with step-by-step
mock-ups in appendix B. All related capabilities are depicted here
as they should be presented to the user when conducting a basic
workflow at the IMPEx portal. Note that it must be determined
by the team before which tools are capable of further processing of
particular selections like in this use case since there is no known
way where the system could identify the suitable tools automati-
cally.

Related UR(s) UR-2.1, UR-2.2, UR-2.3, UR-3.1, UR-3.2 and UR-5.3
*Tool for OPerations on Catalogues and Tables, an IVOA based
viewer and editor for table-based data in the VOTable format:
http://www.star.bris.ac.uk/~mbt/topcat/

Table 5.11.: UR-5.2 User interface arrangement

82

http://www.star.bris.ac.uk/~mbt/topcat/


5. The IMPEx Portal

Number UR-5.3
Title User levels and custom views
Priority S
Origins(s) IMPEx-UAB
Type Interface requirement
Description The IMPEx map should be designed for a variety of different user

groups as already indicated in the introduction of this chapter. This
means there should be a way to switch between different views of
the IMPEx map.
The educational view should emphasize and describe the basics be-
hind the conducted research with the available datasets as well as
the capabilities of tools and services displayed in the IMPEx map.
The focus should be on an explanatory descriptions instead of pro-
viding technical details to the available resources. This is closely
tied to the tutorials and manuals provided by the documentation
services of the IMPEx portal depicted in section 5.2.2. A simplified
“help” function to every element in the user interface should be
in place to ease the usage of functionalities. There could also be
restrictions on the functionality of web services in the educational
view.
The professional view should inhabit the aforementioned general
user interface functionalities to be able to search data trees down
to parameter level and delegate data selections to other tools in-
cluding the full spectrum of web service access available from all
service providers in the IMPEx infrastructure. Furthermore it must
provide access to technical documentation needed for external ex-
ploitation of the IMPEx data trees and web service endpoints.

Comments This user requirement should only be considered in the first iter-
ation of developments with respect to the provision of a flexible
enough mechanism for configuration of the generated views. One
standard view will be served by the IMPEx portal at first based on
the default configuration illustrated in the mock-ups in appendix
B.

Related UR(s) UR-5.2

Table 5.12.: UR-5.3 User levels and custom views
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5.2.6. Backend and Administration features

The backend and administration features are basically concluded from all previously de-
scribed requirements and also have a direct influence on the priorities assumed in
this chapter. The reason for that lies in the fact that an administrative user interface
must be placed on top of the portal implementation to be able to manage the differ-
ent remote resources which are dynamically loaded into the system. In addition to
that the system must be capable of injecting updates on the IMPEx data model and its
related instances in the data trees as well as the web service descriptions.

Number UR-6.1
Title Administrative user interface
Priority M
Origins(s) IMPEx team Graz
Type User interaction
Description The administrative user interface must be browser-based and only

accessible via well-known HTTP authentication methods to the ad-
ministrators of the IMPEx portal. In this interface there must be the
possibility to manage the used XML-based IMPEx configuration file
which enables the IMPEx portal to recognise all data providers dy-
namically, including discovery of the URLs to XML data trees, web
service descriptions and online documentation. The loading of up-
dated configuration files must also include the validation of the
newly fetched XML data trees from the SMDBs as well as AMDA
and ClWeb. Furthermore there should be a basic set of operational
tests provided by the administrative user interface which can be
run at any time to check the availability of service capabilities pro-
vided through the IMPEx portal.
The configuration data itself must be made available to the whole
IMPEx portal immediately after update so that it can be accessed at
any time during the operation of the IMPEx portal by every func-
tionality depending on it. Any included resource should be cached
and persisted on the server if possible and services capabilities
should be configurable with regard to their accessibility within the
user interface.

Comments The actual IMPEx configuration file is documented in appendix A.
The test cases for checking the service capabilities e.g. the request
of specific datasets should be synchronised with the test cases
made in course of developments within other IMPEx tools such
as 3DView.

Related UR(s) UR-2.1 and UR-6.2

Table 5.13.: UR-6.1 Administrative user interface
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Number UR-6.2
Title Handling of data model and tree updates
Priority M
Origins(s) IMPEx team Graz
Type Interface requirement
Description The IMPEx portal must be able to handle updates of the data model

as well as contents of the associated trees in the consolidated rep-
resentation. Therefore the data structure used for storing the con-
solidated IMPEx trees must be able to provide a flexible IMPEx
registry for the portal where selections can be updated depending
on changes done remotely at the SMDBs, AMDA or ClWeb. The
IMPEx registry must be primarily capable of all search- and visual-
isation capabilities depicted in section 5.2.1 and 5.2.2.
Furthermore the foreseen generalised access interface to tree con-
tents and web service methods in the IMPEx registry must be de-
signed to enable a dynamic and configurable IMPEx messaging API
for the portal. The IMPEx messaging API must be primarily capable
of communication- and processing-capabilities depicted in section
5.2.3 and 5.2.4.

Comments In course of investigation during the requirements engineering
phase a similar registry service provided by the SPASE group* was
considered as a suitable basement for the design of the IMPEx reg-
istry.

Related UR(s) UR-1.1, UR-3.2 and UR-6.1
*SPASE Registry Server: http://www.spase-group.org/

tools/registry/

Table 5.14.: UR-6.2 Handling of data model and tree updates

As a conclusion of the user requirements engineering phase it is important to say that
the approach taken in this thesis proved to be optimal. The preliminary studies and
evaluation of suitable base technologies revealed that all needed capabilities to ac-
complish the requirements depicted in this chapter can be provided by Scala in com-
bination with the Play web framework. One has seen from both the technological and
the users perspective which capabilities are mandatory for the successful implemen-
tation of the IMPEx portal. The technological advantages of Scala tightly fit into the
user requirements when referring back to chapter 4 in particular with respect to DSLs,
asynchronous programming and web frameworks. In this chapter the required key
concepts needed from the users perspective were roughly summarised by UR-6.2 in
table 5.14: an IMPEx registry of resources and an IMPEx messaging API for subsequent
data access which are provided by the underlying architecture of the IMPEx portal.
In addition to that a certain focus must be laid on caching and persistence technologies
needed for almost all mandatory requirements described here which involve access
to the content of the data trees. It can be seen that a significant degree of operations
is repeated in each particular use case, especially with the illustration of the IMPEx
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map and the respective workflow during a users session. The required infrastructure
at the IMPEx portal does therefore favour pure functional features since the simple
repetitive operations of data selection and web service access must also have the ca-
pability to be chained like it is done frequently with object-functional programming
features described in this thesis.

5.3. Architectural Design

Before going into details of the architectural design one must look back at the motiva-
tional part of this thesis and compare the preliminary ideas with the assumptions and
conclusions which were drawn from the user requirements in the previous section.
The overall IMPEx infrastructure briefly summarised at the beginning of this thesis
already dictates how the most important features of the portal are to be implemented
and how the principal structure of the portal architecture must be constructed. In fact
the most important issue to tackle in the architectural design will be the communica-
tion with the data providers. Those are making the data trees available through XML
documents and the data access methods through WSDL descriptors via the respec-
tive URLs stored in the IMPEx configuration file. As one can imagine this configuration
marks the starting point from where the available resources and services of the IM-
PEx portal will be dynamically built up and made available. From this point, the main
task of the portal will be to efficiently handle the domain-specific IMPEx data model
based on SPASE and its instantiations - the data trees from the SMDBs. This means
that the portal must integrate a custom DSL for accessing the contained metadata. In
addition to that a simple adapter to the observational data model used by AMDA and
ClWeb must be provided in order to enable the implementation of a unified search
mechanism on both types of trees. Based on the search for particular resources in
the trees a respective interface for communication using the SOAP protocol must be
integrated in the portal. Together these capabilities will enable the implementation of
the full spectrum of requirements depicted in the previous section through a unified
messaging middleware established at the portal. It was already shown in this thesis
with the evaluation of base technologies provided by Scala and its libraries that all
goals are supported from the object-functional perspective so a final architecture will
be built up using their distinct functionalities.

5.3.1. Overall Architecture

In order to show the adapation of the overall IMPEx infrastructure within the de-
sign and implementation of the IMPEx portal, the original figure from Topf (2012a,
p. 25) was taken and modified to show the portal architecture planned in this thesis.
As it can clearly be seen in figure 5.1 the common interfaces as they were planned
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and implemented in IMPEx are also used here. The Data Services and Compute Ser-
vices were slightly modified from the original design as they now provide both access
to observational and simulation data. On the Resource Layer this enables access to
the metadata trees from each data provider in the form of separate XML documents
and in a consolidated form as explained in UR-1.1 (table 5.1 on page 73). On the
Tool Layer each data provider exposes a WSDL document which describes the access
methods available for the resources stored in their respective XML tree. These in-
terface descriptions are the same as they are used by the tools AMDA, ClWeb and
3DView at the current stage of development in the IMPEx project. It must be noted
here that at the time of writing of this thesis only the depicted methods in UR-3.2 (ta-
ble 5.7 on page 78) can be made available through the Data Access Service of the portal.
These methods do not cover the full spectrum of web services available through the
SMDBs because their concrete implementation is still pending and will be finished
until mid of 2014. Nevertheless, the integration of other methods available from the
WSDL documents at the portal is planned at a later stage. They will then be subse-
quently made available at their finalisation via the IMPEx Messaging API either for
direct access through the portal or with a respective reference to tools which have
fully integrated the desired method.
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Figure 5.1.: Overall architecture of the IMPEx portal, following Topf (2012a, p. 25)

As one can see also in figure 5.1, a new service is provided by the portal server: the
IMPEx Config Service which enables the access to the information of the configuration
file both locally but also for remote connections. This service is started automatically
at server initialisation and reads the content of a locally stored IMPEx configuration
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file. In the Play framework, there is the possibility to overwrite the method onStart

from an object Global in the default package where one can place any code, which
needs to be executed at startup of the integrated web server. For subsequent access
to the configuration information during operation of the portal it was decided to use
actors from the Akka library. On one hand the Play framework already starts an Akka
system automatically at startup of the web server and on the other hand it is a good
alternative to classic static objects. In fact actors are classes so they can be spawned in
an Akka system as often as needed and they can be also parametrised in contrast to
static objects. Nevertheless each actor stays alive and is persisted in the main memory
like a static object during operation of the web server instance.

As it is depicted in section 4.2 actors can receive and send messages when they are
instantiated in an actor system. As soon as the actor is “activated” it is addressible
through a name and one can obtain an ActorSelection type referring to it with
e.g. Akka.system.actorSelection("user/config") as it is also shown in the
listing below. Note that an Akka system itself is an actor and in Play every spawned
actor is part of the user system by default hence a child of an actor named user. In
the previous case, the name was assembled by a concrete path of the actor hierarchy
user/config. It is mentioned in Suereth (2012, p. 213) that for hierarchical search
engines a respective actor hierarchy can be from advantage which will be seen in the
next section in a more complex scenario with the IMPEx registry.

Listing 5.1: Synchronous communication with the Config Service

1 // actor creation

Akka.system.actorOf(

3 Props(new ConfigService), name = "config")

5 // actor selection

val actor = Akka.system.actorSelection("user/config")

7

// blocking message call to actor

9 val dbs: List[Database] = Await.result(

(actor ? Some("database")), Duration.2.seconds)

An usual way to communicate with actors is to define messages with case classes,
which are deconstructed by pattern matching within an actor’s receive method for
example. These classes are used to transport the payload of the messages. As soon
as one has the reference of an actor with an ActorRef type, one can use message
patterns on it which are provided by the Akka library.
In the case of the ConfigService actor a frequently used pattern is shown in the
example above with actor ? Some("database") which simply returns a list of
all stored data providers in the configuration. Each provider is represented by a case
class Database and is referenced from within the actor. What is important to note
here is that any returned data from an actor is wrapped in a Future monad. In the
example above a blocking operation Await is used to transform the Future type
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into a Result type containing the final response. Await has here a timeout of two
seconds applied to.

Another option would be to use async{...} blocks to spawn an asynchronous op-
eration on the result anywhere in the code which is not blocking. This feature is also
available for the Action types in controller classes of Play as shown in the listing be-
low. It maybe needed at some stage of development of the IMPEx portal to carefully
think on the optimal way to handle Futures, especially with respect to chains of
(asynchronous) operations. Futures can be used with basic monadic operations like
map or flatMap as well as complex compositions with for-comprehensions. This
will be of importance at the RegistryService.

Listing 5.2: Asynchronous communication with the Config Service

Action.async { // special async Action type

2 // calls with the same message as before

val future = ConfigService.request(GetDatabases)

4

// future response renders view

6 future.map(databases =>

Ok(views.html.config(databases)))

8 }

It was discovered in the user requirements that the ConfigService must also have a
capability to update the configuration. The whole XML file is therefore converted
into a Scala object at startup and made available to the rest of the system through
the actor. Internally the configuration is deconstructed for convenient access to fre-
quently needed information. It will be possible to write an updated configuration to
XML as required by UR-6.1 (table 5.13 on page 84) which automatically updates the
available resources at the portal. For the purpose of databinding the parser genera-
tor scalaxb is used because it can smoothly create case classes out of XML elements
through automatically created implicit parsers similar to as they were described in
section 4.1.

As one will see in the following sections, this option was taken instead of elaborating
own parsers since every needed XML Schema was successfully translated by scalaxb
to respective class representations and associated custom data types. As long as the
structure of the XML Schema does not change this option is very efficient because it
saves resources by ommitting manual creation of parser combinators. Nevertheless it
must be noted here that updates of any XML Schema used in conjunction with scalaxb
require the automatic creation of new combinators and case classes, so this part of
the system cannot change dynamically during operation. This drawback was already
clearly illustrated in section 4.1. In any case, this should not occur frequently because
similar XML Schemas in the scientific domain are mostly well elaborated at the time
of their release and the final integration of the IMPEx extension in the SPASE data
model will provide additional stability in this case.
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After enabling the access to the configuration file, all data providers are extracted
and asserted to either the observation or the simulation domain together with their re-
spective name stored in the configuration. In order to maintain the different domains
of data as well as their associated data providers during operation, each tree will be
fetched at startup and assigned to an actor which becomes addressible via the data
provider names available from the ConfigService. This approach allows the com-
plete realisation of UR-2.1 (table 5.3 on page 75) with regard to dynamic provision
of IMPEx resources at the portal. It will also provide the necessary capabilities for
visualisation of the IMPEx map depicted in UR-5.2 (table 5.11 on page 82). The re-
sult of a GET request is similarly processed as in the communication with an actor
which can be seen in the listing below. This result is also a Future which can be
handled both asynchronously and blocking. All message operations and remote ser-
vice communications work with monadic operations in Play and Akka respectively.
Every response is represented by the same data type which is optimal when actor
messaging and remote service communication must be chained for example with
for-comprehensions.

Listing 5.3: Example of simple GET request in Play

val promise: Future = WS.url(treeURL).get()

2 val treeXML: NodeSeq =

Await.result(promise, Duration.10.minutes).xml

4

val tree: Spase = scalaxb.fromXML[Spase](tree)

The listing above also shows how the XML document is transformed into an object
with scalaxb which will be described further in the next section since this is an inte-
gral part of the RegistryService. This service registers and supervises all previ-
ously mentioned DataProvider actors. It makes their metadata generally available
within the system in particular for the Search/Filter Service and the Data Access Ser-
vice respectively. Both services are relying on the structure of the registry which is
to be defined before. They will be able to obtain information from the registry as
soon as they become active in the system. The Search/Filter Service will be able to ex-
tract information according to the defined filter mechanisms in UR-1.2 (table 5.2 on
page 74). The Data Access Service will enable the communication with the web ser-
vices described in the WSDLs. Each set of web services will also be asserted to the
respective data provider name from the IMPEx configuration file. In fact an additional
entity is needed for enabling the web service access because they are also maintained
through generated access classes with scalaxb. This access interface is static at the
moment and should therefore be decoupled from the dynamically assembled Reg-
istryService. Since the operations provided by the generated classes are blocking, this
interface might change in the future. In any case, only the fully operational methods
suitable for the portal are finally made available via the interface to the User Layer
of the portal. One feature will be operational Data Access Service from the beginning
which is the interface to the User Data store. In this case the service provides tools
for creation of documents in the VOTable format as well as update and deletion of
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results obtained from the web services which respond in the same format on request.
Since this capability enables URL access to generated files it is considered as auxiliary
service of the IMPEx messaging API.

All the three distinct services provided by the portal server can be composed and
each of the services is a self-contained component on its own. Loosely coupled,
component-based architectures are also a typical use case for Akka systems as men-
tioned in Gupta (2012, p. 21). The IMPEx Messaging API finally provides an unified
REST interface to all the capabilities provided at the portal hiding the underlying
actor system and network communication which will be elaborated in section 5.3.3.
This enables the custom composition of services on the client side and also an optimal
abstraction between Tool- and User Layer because there is a low-level access possible
as well as advanced data exploitation through the portal. All the respective client-
side requirements from UR-5.2 (table 5.11 on page 82) must be kept in mind here
with regard to granularity of data access. The IMPEx Messaging API makes it pos-
sible to compose the capabilities of each portal service on the client-side. Note that
the DataProvider actors are building up the tree database at the portal since each
actor is holding it’s tree as shown in figure 5.1. The XML documents are updated
automatically during operation of the portal. The actor system of Akka provides a
scheduling mechanism for sending specific messages to an referred actor. In the case
of the portal an update message is again fetching the tree from the remote server
and updates the actually saved tree in the DataProvider actor. This functionality is
seen as sufficient for automatic caching of the remote trees in the initial version of the
IMPEx portal in order to meet the requirements in UR-6.2 (table 5.14 on page 85).
In addition to that the actor will backup the trees on harddisk once after each update
which is also enabled through the scheduler at startup.

5.3.2. The IMPEx Registry

The IMPEx Registry Service is a mechanism which needs to be available at startup of
the portal server after the resources are downloaded and made available to the sys-
tem. As already mentioned this service is able to collect the information from the
DataProvider actors once they are registered there. In fact the RegistryService
will automatically dispatch selections of the trees after the called DataProvider ac-
tor has transformed the XML data into an object representation with scalaxb. It is
also an actor on its own which enables a domain-specific access interface to metadata
supporting the two different data models used for observational and simulation data.
As already mentioned, the DataProvider is identified by the registry through it’s
unique name stored in the IMPEx configuration file. Furthermore, the databases are
distinguished by their type (simulation or observation) in the RegistryService

to be able to handle the two different data models and their object representations.
The object representations are returned from the registry either in the original XML
representation with scalaxb’s toXML[T] method or by implicit writers and readers in
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the JSON format. The latter functionality is in particular useful for the IMPEx portal
client. The features of the registry are provided through a unified access interface
respecting the hierarchical structure of both data models which means they are en-
abling a basic domain-specific language for browsing the content of the XML tree
instances.

SimulationModel SimulationRun NumericalOutput

Repository

Spase

Granule

1:N

1:N

1:N

1:N 1:N

1:N

Figure 5.2.: Hierarchy of SPASE based simulation model

Figure 5.2 and 5.3 illustrate the hierarchy and relationships of the key elements of
each data model. The elements for the SPASE-based simulation model represent the
set of resources which can be obtained from the SMDBs. In this case the hierarchy is
not described with a classical XML-tree structure but the elements are identified by
a ResourceID. Every element depicted in figure 5.2 is a direct child of the Spase

XML-element. Through the structure of the ResourceID element which is an URI
there can be informal hierarchical relationships between resources and every URI is
built up from scheme://authority/path (The SPASE Consortium, 2011, p. 7). In IMPEx
all SMDBs are represented with the infrastructure resource Repository as author-
ity. The SimulationModel is only informally tied to the repository through its
ResourceID for example impex://LATMOS/Hybrid. All other elements are formally
tied to at least one other element. This means that NumericalOutput for example
has a reference element pointing to a SimulationRun and to Repository. The
reason for using such a reference model within SPASE is that components can be
composed and distributed easier with a flat XML hierarchy (The SPASE Consortium,
2011, p. 8). Through the structure of the ResourceID all elements are informally
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related to each other so they can be automatically grouped. This also helps when the
tree must be constructed dynamically beginning from the root node. Furthermore it
is easy to provide a consolidated SPASE tree as it will be needed for UR-1.1 (table 5.1
on page 73).

The Registry Service at the portal will use this path-based hierarchical structure of
SPASE to resolve the resources as follows:

Listing 5.4: URL path for the SPASE data model

1 GET /{ProviderName}/{SimulationModel}/{SimulationRun}/

{NumericalOutput{/{Granule = None}

A simple "simulation" message to the actor will return all available Repository
elements. The ResourceID of a specific SPASE repository (or any infrastructure
resource) is tied to the name stored in the IMPEx configuration file and can be subse-
quently used to obtain the respective SimulationModel elements and so on. Note
that Granule is an optional element which is not provided by every SMDB tree. In
principle, all available elements of the SPASE data model can be translated by the reg-
istry and scalaxb respectively, but for now only the mentioned originating- and data-
resources will be integrated here. Nevertheless IMPEx-specific elements depicted in
the path have nested elements which include domain-specific metadata needed for
the Data Access Service as well as the Search/Filter Service 4. The latter service will au-
tomatically request the respective parent elements at the Registry Service based on its
implemented search- and filter operations and return a recursive version of the tree
selection.

parameter

component

dataset

mission

instrument

dataCenter

dataRoot

1:N

1:N1:N
1:N1:N

1:N

Figure 5.3.: Hierarchy of proprietary observational model

4Full documentation of the SPASE data model including all elements of the IMPEx extension is avail-
able at: http://impex.latmos.ipsl.fr/tools/DataModel.htm
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The observational data model is used for accessing data from ClWeb and AMDA. As
shown in figure 5.3 the structure is fundamentally different. Each element in the hier-
archy is nested within its respective parent element. The XML-tree structure dictates
the path and each element has attributes as direct identifiers. In this case the resolving
URL path can be constructed as follows:

Listing 5.5: URL path for the observation data model

GET /{ProviderName}/{Mission}/{Instrument}/{Parameter}/

2 {Component = None}

A simple message "observation" to the actor will return all available dataCenter
elements which are again translated to the provider name stored in the IMPEx configu-
ration file. Here the attribute xml:id identifies e.g. a specific dataset or instrument
element. A DataProvider actor tied to an observational data tree deconstructs the
path shown above into respective selections, so that only portions of the hierarchy
can be displayed similar to as it is done with the SPASE data model. As already
mentioned, both data models are dynamically translated into objects with scalaxb in
the DataProvider actor. The RegistryService actor is in particular responsible
for distinguishing between observation and simulation data providers because it needs
to know which objects are to be send by the actors. It must be noted here that all
actor classes defined for the IMPEx portal are accompanied by a companion object
which implements the message patterns described in section 5.3.1. All the commu-
nication to the related actor is usually done through this object. In the case of the
DataProvider actor all defined operations take an ActorRef value as input which
needs to be selected by the RegistryService actor before.

As soon as the registry gets a request on a specific ProviderName for example it
selects the respective actor and sends a message to it. With multiple actors as it is
the case in the IMPEx portal for-comprehensions provide a lot of possibilities when
working with Futures as can be seen in the listing below. In order to obtain all
Repository elements from a specific domain (simulation or observation) for example,
the configuration service is requested for the respective list of databases and then each
actor is asynchronously called by the registry. The partial results databases and
providers as well as the combined result of the for-comprehensions are yielded
into a Future monad. In this case the result must be also flattened in the end since
provider returns a sequence of Futures nested in a single Future. As already
discovered any Future type can easily be processed further in respective controller
actions of the Play framework.

Listing 5.6: A typical call to a DataProvider actor

def getRepositoryType(dType: Databasetype):

2 Future[Seq[(Databasetype, Any)]] = {

4 for {
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// requests databases from specific type

6 databases <- ConfigService.request(

GetDatabaseType(dType)).mapTo[Seq[Database]]

8

// requests all repository elements one after

10 // another with Future.sequence

providers <-

12 Future.sequence(

getChilds(databases) map {

14 provider =>

DataProvider.getRepository(provider) })

16

// result is flatten due to nested Futures

18 } yield providers.flatten

}

In order to prevent reloading of larges amounts of metadata from the trees, the re-
spective Action method calling the registry actor will be cached as a whole by the
Play framework cache API as it is illustrated in Hilton et al. (2013, p. 269). It is noted
here that REST-based URL routes defined in Play must be static and not contain e.g.
GET query parameters in order to be able to use the cache API for entire actions. Es-
pecially with the requirement to provide download of large consolidated XML trees
for the observation and simulation domain of IMPEx this cache can be used system-
wide for all users. Dynamic routes and their respective Action methods will need to
combine the cache with the HTTP-based user session which can be initiated by calling
any of the implemented actions in this Play application. As soon as the user accesses
one of the cache-enabled actions, their response will be made accessible through a
key-value store for each subsequent request during an user session as it was requested
in UR-5.1 (table 5.10 on page 81).

With the capabilities of the IMPEx messaging API, the Registry Service is finally pro-
vided to the user through a REST-based interface mirroring the hierarchy paths of
the two different data models. For convenience the two distinct URL-paths will
get a prefix which identifies their respective domain: /simulations/... and
/observations/.... Altogether the actor-based approach in the backend of the
IMPEx portal is fulfilling the requirement to provide a unified access interface to both
types of metadata. As soon as observational metadata integrated in IMPEx becomes
available in SPASE-compliant format the DataProvider actor can be refactored and
the proprietary format can be removed from the data access interface. The hierarchy-
based access scheme depicted here is also reflecting the key characteristics of a DSL
and this is also in-line with what is proposed from the SPASE community as indi-
cated in the user requirements. Furthermore actor-based systems are loosely-coupled
and they can be distributed across the network with the same messaging capabilities
as on a local system. This fact is considered as a main driver for usage of the Akka
concurrency library in this project.
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The preliminary class diagrams of the mentioned actors and companion objects in
this section is illustrated in appendix C. Note that these classes are not fully elabo-
rated at the time of writing this thesis and some basic access methods for the registry
are still missing. Nevertheless it is clear that both the Search/Filter Service and the Data
Access Service can easily be embedded in this actor-based scheme and act as separate
services depending on previous selections from the Registry Service. The communica-
tion with these three distinct services will therefore be also unified through the IMPEx
messaging API and made available to the portal client but also for remote access with
a REST interface.

5.3.3. The IMPEx Messaging API

As a final step of the fundamental architectural design, the connection to the service-
oriented architecture of IMPEx must be completed by introducing the before men-
tioned unified access interface called the IMPEx messaging API. It is clearly demanded
by the community as seen in the user requirements to provide such an access interface
to both the metadata of the trees and the services exploiting datasets of simulations
and observations within IMPEx. In fact all functionalities implemented by the IMPEx
portal client are solely relying on the REST proxy provided by this messaging API. As
also discovered in the theoretical chapters of this thesis most of the client-side Java-
Script frameworks are managing their access to resources through REST-APIs. The
reason for that lies in the fact that the stateless nature of the HTTP protocol allows
to easily combine requests on the client, so the granularity of access to the capabili-
ties of the portal server can also be controlled on the client-side. Every component in
the REST-API is independent and scalable with regard to their possible interactions
between components.

This fact allows the creation of a client as it is required in the sense that one can
chain REST requests needed to enable workflows as shown with the IMPEx portal
map in appendix B. It must be noted here that the default view templates of Play
are only used during the development of the portal in order to be able to test the
respective parts of the interface e.g. the registry or the data access mechanism. This
will be indicated in course of the definitions in this section. The portal client will
finally be completely abstracted from the portal server in that respect that a suitable
MVC framework e.g. angular.js5 will deliver the required dynamic representation in
HTML based upon communication with the REST-API. This approach will also show
the usefulness of the unified interface for external applications. By using a REST-
architecture there is also the possibility to easily combine different elements of the
API and realise workflows with respective engines like Taverna as noted in the user
requirements. So there is no restriction here with regard to using Taverna workflows
with one REST-interface instead of scattered SOAP-based services.

5Angular.js, an open-source JavaScript framework for single-page web applications, see: http://
angularjs.org/
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All the distinct capabilities provided through the API are self-contained which means
they do not explicitly rely on any other capability provided at the level of this inter-
face. Nonetheless the basic capabilities of the IMPEx Registry Service are implicitly
serving information which is mandatory for using more complex services as indi-
cated in the previous section. This means a typical workflow on the client will at first
ask the IMPEx Registry Service and then choose a suitable service from the Data Access
Service for example. Since the underlying Play framework of the portal is focusing
on a clear definition of a REST-API for clients connecting to it, it is a also logical
conclusion in that respect to use only a basic REST-architecture with its predefined
HTTP request methods for the IMPEx messaging API. In fact this thesis also follows
the paradigm of “URL-centric” design which is favoured by the Play framework.
The whole architecture is built bottom-up with a clear definition of the HTTP routes
needed to browse, select and access datasets from the trees through the respective
web services. This means also, as already mentioned in section 4.4 that the focus is on
a resource-oriented architecture rather that a service-oriented architecture. It must be
noted that the structure of this foreseen protocol layer is perfectly fitting into the de-
sign of the SPASE data model hierarchy with its ResourceID elements as mentioned
in the previous section. Every element delivered by the data models can be directly
mapped on a resource which is made accessible through an URL corresponding to its
path in the respective XML hierarchy.

Nevertheless the SPASE data model is slightly adapted internally and by default all
simulation models are automatically related to a repository stored in the same XML
tree of a specific data provider. The repository, as already mentioned is also auto-
matically tied to a Database element stored in the IMPEx configuration. All the
following elements in the SPASE hierarchy are connected to their formally related
parent element. Every call to the registry through the messaging API returns the re-
spective parent element for example SimulationModel and all SimulationRun
child elements. The messaging API exposes this information in a way which shows
the child-parent relationships to the client based on the URL paths in the IMPEx por-
tal. This means that child elements are identified by their relative path inside their
parents. As soon as one has the relative ResourceID of a simulation model for ex-
ample HYB one can obtain the child elements which are in this case simulation runs
as shown in the listing below.

Listing 5.7: Example of API calls to the Registry Service

1 // returns all Repositories

GET /simulations

3

// returns all dataCenters

5 GET /observations

7 // returns all SimulationModels

GET /simulations/FMI

9
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// returns all SimulationRuns of LATMOS

11 GET /simulations/LATMOS/HYB

The API in this case returns a simple JSON array which contains a JSON object
with metadata of one simulation model and an abritrary amount of JSON objects
representing the related simulation runs by default. The key for the model meta-
data is given by its URL path at the portal based on its relative ResourceID e.g.
LATMOS/HYB. The keys for the simulation runs metadata are given by their relative
path within the model e.g. LATMOS/HYB/Mars_14_01_13_SimRun. With that ca-
pability the clients connecting to the portal can easily browse through the hierarchy
without loosing the parent-child context within the observation or simulation do-
main. In the development version of the portal a respective view template will be
displayed in the paths to enable browsing through the results in a basic manner with
URL lists. Note that some of the relative ResourceID identifiers must be translated
internally since they contain slashes which would result in incorrect URL paths at the
portal. They are replaced with their respective HTML entity code when the related
API controller action is returning the information obtained from the registry service.
The actual metadata is stored as a whole in the respective value of the JSON object so
the original SPASE ResourceID of each element is retained in the results. Over the
same routes defined in the listing above it is possible to obtain the tree in its original
SPASE format with the option to return also the parent elements in a recursive man-
ner. This is a mandatory feature because the original XML format might be requested
by other tools connecting to the IMPEx Registry Service. For the observational data
the xml:id will be used instead for identifying the path. All other capabilities of this
type of data will be subsequently handled in the same way as simulations through
the API. Both the ResourceID and the xml:id of specific elements will be needed
for further exploitation of the Data Access Service.

Since the IMPEx infrastructure is providing SOAP-based web services for data access
after selection from the trees through the IMPEx Registry Service there must be a pos-
sibility to transform this services into resource-based entities within the messaging
API. This means according to the definitions of Daigneau (2011) that the portal in fact
respresents a mixture of a pure resource API with parts of a message API in the form
of SOAP services. The portal must be able to act as a SOAP client internally within
the Data Access Service which dispatches requests to the according data provider. The
REST-based interface finally provided by the portal does not trouble the user with
manual handling of specific SOAP messages. This means there is no particular tech-
nical knowledge needed about the SOAP protocol as well experience in working with
the IMPEx data model. The interface smoothly translates the SOAP services into a dy-
namic an hierarchical map of capabilities which is structured similiar to the IMPEx
Registry Service. In fact the responsive part of the messaging API can be seen as a
kind of REST controller enabling access to a set of similar resources from a particular
domain which is always the case with the methods provided by the WSDLs available
in IMPEx. Nevertheless this controller is only manually tied to one specific type of
element stored in the trees. This information is not available from the WSDL files
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so the API for accessing the Data Access Service must be able to obtain the respective
parts of the XML tree before calling the web services to be usable without explicitly
requesting the IMPEx Registry Service before. For example, all methods depicted in
UR-3.2 (table 5.7 on page 78) which are available from SINP can only be called with
a ResourceID from one of the simulation models stored in the SINP tree. The used
element type in the SOAP message defintion is only reflecting its nature as a general
ResourceID from SPASE data model.

The DataAccessService is a static object which is organised according to the con-
tent of the IMPEx configuration file. Every data provider listed in the configuration
can be addressed through this object and their related set of methods is made avail-
able through a dedicated controller of the Play framework. These methods are pro-
vided by classes which are generated from the current WSDLs through scalaxb. As
already mentioned in the previous section this is the reason for a separate entity
in the architecture which makes the SOAP services accessible. Although the code
generated by scalaxb is flexible with a variety of possibilities how to use the services
with its used cake design pattern6 as described in Perrett (2011b) it is static and can-
not be changed during operation as opposed to the metadata trees provided by the
RegistryService. Furthermore it is also needed to think about ways to encap-
sulate the blocking operations into asynchronous blocks of code when calling web
services.

In this regard it makes sense when the respective paths to the controller actions re-
quest the needed set of elements from the RegistryService in parallel and com-
bine basic operations by default on the server to simplify the workflow on the client-
side. In the listing below there are three examples of the IMPEx messaging API which
define URL paths to methods without any query parameters. The fourth example
indicates how the web service is finally called in principle.

Listing 5.8: Example of API calls to the Data Access Service

1 // returns a list of methods available from SINP

GET /methods/SINP

3

// returns the list of applicable simulation models

5 GET /methods/SINP/calculateDataPointValue/inputs

7 // returns the list of applicable numerical outputs

// returns the list of available VOTables in the session

9 GET /methods/LATMOS/getDataPointValue/inputs

11 // sends a web service request

GET /methods/LATMOS/getDataPointValue?<params>

6The cake design pattern is enabling dependency injection by using Scala’s mixin strategy, see also
Odersky and Zenger (2005)
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The first example just returns a JSON encoded list of the available methods of the
respective access class provided by scalaxb for the WSDL of SINP. As it is noted in the
example, a list of elements is returned which are applicable to the web service through
the sub-path inputs/. These can also be elements of different types for example
with the method for getFileURL which can take references to simulation runs or
numerical outputs as input. The base path to a method will for the development
version of the portal provide a form from where the interface to the method can be
tested. Some metadata will be needed as descriptive information in the client’s user
interface in the end but the ResourceID of a single element is mandatory for the
web service call in any case. The final call on the respective web service is handled
via GET query parameters which are sent to the base path. Those parameters are in
the first iteration only defined by a written REST API documentation which will be
finalised during the implementation phase. Internally scalaxb is used to dispatch the
request through the respective acccess class as it is shown by example below with a
call to the getParameter method from the AMDA database.

Listing 5.9: Example of web service call with scalaxb

// create service binding

2 val provider = new Methods_AMDASoapBindings with

scalaxb.SoapClients with

4 scalaxb.DispatchHttpClients {}

6 // call method of binding

provider.service.getParameter(

8 startTime = "2011-08-10T00:00",

stopTime = "2011-08-11T00:00",

10 parameterID = wnd_swe_he, sampling = None,

userID = Some("impex"), password = None,

12 outputFormat = Some("VOTable"),

timeFormat = Some("ISO8601"), gzip = None)

The portal client will provide a respective user interface for using the methods which
is built up manually by using the above mentioned routes and the API documen-
tation. It is considered to improve the responses of the URL paths listed above in
the future to include JSON encoded information of all mandatory and optional pa-
rameters related to the method through the inputs/ sub-path based on the defini-
tions stored in WSDL file . Then it will also be possible to use the defined custom
types in the WSDL file directly on the client because their restrictions and possi-
ble values will be encoded in the response of the inputs/ sub-path as well. For
that feature it will be needed to decide on a shared XML Schema for the IMPEx
WSDL files which include common types (e.g. spacecraft abbreviations needed for
getDataPointValue_Spacecraft), but also message signatures which are the
same at every SMDB (e.g. the method getDataPointValue).
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Results obtained from the web services are always returned in the VOTable format
although there are different types available at the portal. In this case the messag-
ing API must also be unified to simplify other operations implemented within the
DataAccessService object. The VOTable files are saved on the portal server in the
User Data store as soon as they are returned from the web service. They are address-
ible through the SessionID of the users working session subsequently. As soon as the
user calls the userdata/ path, the portal server returns a list of URLs pointing to all
previously acquired VOTables which can then be downloaded as depicted in UR-4.1
(table 5.8 on page 79). Furthermore there will be the possibility that client implemen-
tations may POST files in the VOTable format to the path userdata/create which
returns a link to the storage location on the server.

In conjunction with the requirements for the portal client in UR-4.2 (table 5.9 on
page 80) this part of the API will finally provide a path for updating VOTable files. In
the development version userdata/update will enable creation of VOTables from
scratch. Internally the VOTable will be created and transformed for updates also with
scalaxb and it’s respective XML Schema from IVOA7. In some cases the mandatory in-
put parameters include URLs to VOTable files e.g with getDataPointValue. In
this case the available files from the users working session available in userdata/

will be suggested by the inputs/ route shown in the previous listing. This feature
can later be extended to support more functionalities for creation of VOTable files
e.g. from CSV files. The reason for using a unified response format from the web
services lies in the fact that the results must be further used by the SAMP hub delega-
tion mechanism which is using this format by default. Such a delegation mechanism
is also a novelty at a central access point within the IMPEx infrastructure since it
is only available at tool level up to now with very limited capabilities as shown in
UR-3.1 (table 5.6 on page 77). Note that the usage of URLs in GET queries is gener-
ally discouraged because this means the request is relying on other resources whose
availability cannot be guaranteed. This drawback must be considered when working
with this part of the API on the client.

Another use case on how the functionality of the Data Access Service can be realised
in a workflow is as follows: The user is browsing the registry with the respective
part of the messaging API until a specific NumericalOutput element for example is
reached which can be used as parameter for a set REST methods. As soon as the con-
troller of the Registry Service is asked to display the metadata of this element, it sends
a request to the Data Access Service before to obtain information on which methods are
available for this particular type of element at the respective data provider. This fea-
ture will only make sense as soon as this part of the messaging API providing access
to the methods is returning the signatures and custom types from the WSDLs dy-
namically to the client. The improvements needed in order to make the WSDLs more
self-descriptive and unified is subject of further studies within the project lifetime of
the IMPEx project.

7 VOTable Schema v1.2: http://www.ivoa.net/xml/VOTable/v1.2
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6. Results and Discussion

At the beginning of this thesis a concise overview of the fundations of functional pro-
gramming was shown with the introduction of lambda calculus. The related studies
were seen as necessary for further evaluation and elaboration of the research ques-
tion which asked for suitable elements of functional programming required for the
development of the IMPEx portal. This approach in particular was needed to obtain
a deeper understanding of the different mindset followed by the functional paradigm
and its focus on functions as a versatile component of software design. At first the
attention was drawn on the different reduction strategies provided by lambda calcu-
lus which provide a tool for simplifying λ-expressions in this formal language. This
study enabled a clear understanding of the evaluation strategies used within modern
programming languages which are based on these reduction strategies. It was also
discovered during the theoretical chapters of this thesis that these fundamental cor-
nerstones are necessary to develop memory efficient code so that there is no drawback
in using functional style over imperative style when building up a software architec-
ture. The reasoning behind that was clearly shown based on the historical growth of
functional programming, through the increase of computing power and the evolution
of parallel and concurrent software design as a consequence. Furthermore a few use
cases were illustrated where imperative features like I/O and creation of side-effects
can be translated to functional programming with lazy evaluation.

The most important issue when working with λ-expressions is discussed in particular
at the beginning: Everything in lambda calculus can be built up with λ-expressions.
This means that even control structures and primitive types are represented with this
basic unit in lambda calculus. This is an interesting fact which was also re-discovered
in the principle assembly of the object-functional language Scala. In this case every-
thing is built up with objects. In both cases a clear overview of their advantages was
shown so that one can understand their usefulnes in real world applications like the
IMPEx portal in this thesis. It must be noted here that it needs time to achieve a satis-
fying transition in the software design by using the provided object-functional capa-
bilities instead of their imperative counterparts. The code is structured significantly
different in most of the situations depicted here. It was also elaborated in course
of this thesis why the pure functional paradigm has not been considered widely for
commercial applications until recently. The reason for that was presented clearly: The
way functional programs are designed need more attention from the programmer
because with functional programming there is a certain degree of overhead created
which is slightly less efficient compared to imperative programming. Nevertheless
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this argument is more and more vanishing because today programmers do not need
to think about every single allocation of memory cells anymore. In fact there are
much more resources available and systems are additionally more scalable then they
used to be in the past. In any case the seamless integration of Java libraries help the
developers to smoothly change their way of programming within Scala.

All the principle elements of functional programming such as first-class values, higher-
order functions, recursions and functional composition let the developers design their
software in fact in a more efficient way as in imperative programming. Together with
immutable values for example it is possible to write self-contained pieces of software
which do not depend on other parts of the software. These pieces are also more fail-
proof as in imperative programming because they generally avoid side-effects. Those
side-effects include local, mutable variables in functions and classes which are gen-
erally discouraged in pure functional languages as well as the Scala language. In
course of theoretical studies in this thesis a gradual transition was undertaken with
the movement from imperative control structures to pattern matching for example.
Furthermore a set of possibilities were presented how functions can be composed to
achieve more complex, self-contained units. What was from equal importance in the
studies of this thesis was the elaboration of different typesystems coming from func-
tional and imperative programming. At first the focus was laid on generic functions
with type parameters originating from Haskell which can be found again in Scala.
Furthermore a clear distinction was drawn between static and dynamic typesystems
and their different approaches were shown on the basis of findings in functional pro-
gramming languages. In the case of Scala it was proven to be optimal to use a static
typesystem which helps in the realisation of referential transparency and type inference
subsequently. It is clearly shown in this thesis that these functional principles are
fundamentally useful for the realisation of DSLs in service-oriented systems because
they are ensuring type-safe operations.

In the case of the IMPEx portal the usage of polymorphic data structures as depicted
in the theoretical chapters with their recursive access- and manipulation procedures
is also seen as optimal with regard to the foundations of the IMPEx data model. Es-
pecially with the vast usage of XML structures a respective tree-like representation
is used and their implemented higher-order functions enable an easy deconstruction
of the stored metadata. Together with the object-oriented capabilities of Scala this
allows the implementation of abstract data types which can interpret the data model
and manipulate the content of the XML trees subsequently. In addition to that these
data types provide a set of access methods to datasets available within the service-
oriented architecture of IMPEx. Through type parametrised class hierarchies enabled
by Scala it is also possible to abstract different operations which can be defined type-
independent. The extendibility of the portal’s functionality is additionally given by
the object-oriented subtyping relationships between the implemented and instanti-
ated actor classes for example. Subtyping is also from particular importance with
regard to the IMPEx data model because every element in the XML hierarchy is a dis-
tinct Scala object but shares a common set of access methods with the other XML en-
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tities in the end. The IMPEx portal architecture especially uses implicit and dynamic
method dispatching together with pattern matching and case classes to deconstruct
this XML hierarchy. This functionalities are solely provided by the parser generators
from the scalaxb library.

Altogether the domain-specific model of IMPEx and its distributed architecture is
hidden beneath an unified access layer which defines an embedded Scala-based DSL.
Its semantics represent a common query language which can be used in a variety of
use cases ranging from metadata extraction to remote dataset exploitation. The inter-
nals of the DSL are built up with modules which capsulate these separate functional-
ities. These modules are almost throughoutly captured within a monadic data struc-
ture as it was shown by the design of an actor-based architecture at the IMPEx portal
server. It is important to note that monads allow single-threaded operations and
their results are always represented by their particular return type such as Future
or Option. The general outcome of the architectural design is a component-based
architecture which is able to interact internally and is providing a set of operations to
the outside world over a REST-based interface. The internal interaction is dominated
by the message based communication between the actors through their companion
objects. This communication can be composed based on monadic operations as it
was shown with examples taken from RegistryService actor. Since the messages
are almost always represented by case classes, subtying also helps here when dis-
patching the requests over companion objects with pattern matching. This approach
clearly shows the advantages of the combination of these particular functional- and
object-oriented capabilities. With this fusion it is possible to program the flow of data
explicitly by sending around case class instances in the actor system which contain
the required information of the request. One can avoid almost every imperative con-
trol structure and local variables with this fundamental approach and increase the
fail-proofness of the overall architecture in the end. In that respect it was seen as
particularily important to evaluate every needed object-functional capability of Scala
before, based on the basic aims and goals of the IMPEx portal.

Since it was not the primary goal of the IMPEx project to provide a unified access
interface from a centralised service in the beginning there was also the necessity to
create an use case in this thesis which emphasises the advantages of actor-based sys-
tems. They are an important aspect for reasoning about Scala and it’s usefulness
within web-based scientific tools. It was clearly shown in the architectural design
that Scala does not make any difference between calls to remote web services and
actor communication with regard to their return types. In addition to that actors can
communicate locally and remotely which is certainly an aspect to think about in fu-
ture projects because it would enable type-safe communication with an own protocol
instead of the currently used SOAP based interaction. Because of their asynchronous
nature which is based on an event-driven model, exception handling within actor
systems is designed more efficiently as in imperative programming. No operation
is blocking by default and there are monadic data types returned in any situation.
Furthermore this approach is more flexible when thinking about bus-based messag-
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ing systems or transaction-based communication which are certainly considered for
future extensions. In that respect it is needed from the beginning to create unified
error handling mechanisms which can be easily understood by the clients connecting
to the IMPEx portal. The server-side part must additionally be capable of removing
non- responding services from the access interface dynamically to avoid web service
calls to data providers which are temporarily offline. This capability is also provided
by the actor-based system because there is a monitoring functionality embedded in
the IMPEx portal architecture which checks and updates information stored within
the actors frequently.

The Play framework finally unifies all the capabilities of the IMPEx portal over a
REST interface as it already was clearly shown in the practical chapters of this thesis.
Since every distinct capability is built up with non-blocking actions here out-of-the-
box it can be easily connected to the previously defined actor-based system of the
portal. This means that the controllers of the Play-based application are also using
Future types to return information over the provided HTTP interface to the client.
Therefore they can use the same compositional capabilities as they are incorporated
in the internal communication of the actor-based system. Since the XML trees are
only persisted in the main memory at the moment the response times of the system
when loading selections of metadata can be seen as most optimal. Every element of
the tree can be requested dynamically in the respective action context and made avail-
able to the calling client asynchronously. There is also a fallback mechanism included
which makes regular hard-disk dumps of the XML documents in the background so
that the metadata trees can be loaded into memory again at any time independent
of their availability over the network. It must be noted here that the client is also
constructed based upon an event-driven model with service-based components so
the exploitation of the REST interface can be designed conceptually similar to the
internal architecture of the portal server providing it. Together with JSON encoded
data communicated through the REST interface this allows an agile elaboration of
the client based functionalities after the successful implementation of the backend
capabilities. The reason for that lies in the fact that the data model specific opera-
tions can be translated easily to the JavaScript context with this approach. It was
concluded that the REST interface must also provide a native XML representation
of each response from the system. The used JavaScript libraries for the portal client
can finally construct the respective HTML based representaton dynamically by com-
bining operations from the REST interface. In order to justify this design decisions
a preselection was made with the angular.js MVC framework in combination with
the TypeScript system in course of elaboration of the portal architecture based upon
previous experiences by the author. It was also discovered during the elaboration of
the portal architecture that sometimes it will be needed to encode state in subsequent
communication with the stateless REST interface. Fortunately there is everything
made available from the Play framework out-of-the-box too with its key-value based
caching system and its distinct session handling capabilities which together are seen
as sufficient in the first iteration within the development phase of the portal.
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It can be clearly seen from the results of the practical chapters that the aims and goals
of this thesis were fully accomplished. In the end a prototype using a significant
amount of object-functional features was presented here. This prototype is fully in-
line with the user requirements depicted in this thesis and furthermore it does also
comply to the general properties of a Virtual Observatory (VO). In fact the original
service-oriented architecture is covered by an additional unified layer here which
allows access to metadata over a registry similar to respective implementation of the
SPASE group. Nevertheless some issues were encountered which still need to be
solved in course of the ongoing software development process. Despite of the vast
possibilities of Scala with its complex typesystem including generics and subtyping
as well as its advantages with implicit parser combinators there are still some issues
with the data binding of XML documents. The scalaxb library is still in an immature
stage and especially complex XML types are not transformed in an optimal way to
Scala objects according to the experiences made at the beginning of the development
phase. Furthermore the inclusion of the web services over the included WSDLs in
IMPEx is not optimal at the portal because the parser generator of scalaxb is creating
the contained access methods in a static way. Every call to a remote SOAP server is
also blocking which cannot be avoided at the moment. This is an issue which is again
related to the immature stage of scalaxb. From the IMPEx perspective the WSDLs also
have no common parameter types with a few exceptions which are imported from
the XML Schema of the IMPEx data model. This is certainly an aspect which needs to
be discussed in the community in order to unify important parts of the definition in
a dedicated XML Schema for the types in the WSDLs of the IMPEx infrastructure.

It was also seen as difficult to move away from the SOAP protocol and provide every-
thing only through the HTTP methods used in a resource-oriented architecture. One
has seen that a fully compliant REST interface would avoid GET queries which can
only temporarily exist. This is the case at the IMPEx portal and will probably not be
changed because it is simply not foreseen to hand over e.g. VOTable files to remote
services in other ways than based on URLs. These files are typically generated during
a users session at the portal and are therefore deleted after a certain time. In addition
to that the ResourceID URIs used within the SPASE-based data model are some-
times not elaborated well so they must be transformed in the meantime so that they
can be translated to URL paths properly. Due to the flat hierarchy of the SPASE data
model it might be needed to move away from tree-like respresentations to key-value
based maps. Altogether more emphasis must be placed on the definitions of the IM-

106



7. Conclusions and Outlook

PEx configuration file and on the unification of the simulation and observation data
model until the end of this project and beyond. It was shown by example here that
on one hand the configuration is used as a general reference point for the interacting
actors to identify resources. On the other hand it is clearly shown here that handling
of multiple data models is making the system significantly more complicated with
regard to unified search capabilities.

What is still only preliminary defined in conjunction with the general design of the
IMPEx portal server are the capabilities provided by the IMPEx client. It was men-
tioned that a concrete design and and implementation is not considered as useful
before the REST interface isn’t fully elaborated and operating. In the first stage of
developments the interface will provide view templates of the Play framework to be
able to test the individual capabilities of the REST interface beforehand. Nevertheless
the structure of a Play based application dictates how modern web-based applica-
tions should be constructed. Two of the most important issues on the client-side are
similar to those identified on the server-side: scalability of the respective components
and loose coupling between them. This can certainly be achieved by the mentioned
client-side libraries but appropriate libaries for the user interface elements needed for
the IMPEx map are still in discussion. In any case all needed functionality for working
with the domain-specific models and VOTable structures on the client will be avail-
able through a respective representation within the JavaScript context based on the
transferred JSON objects from the server. Nevertheless the original XML representa-
tion of VOTable files will be needed when delegating selections from the client over
the SAMP hub which was already taken into account in the architectural design.

Finally it is to say that the here evaluated extended capabilities of object-functional
programming such as the actor-based Akka library and the asynchronous nature of
the Play framework are extremly useful for the elaboration of fully scalable and re-
silient web-based applications. One important conclusion was drawn in course of
the respective studies: Actor-based systems are also capable of being distributed over
the network. This means that the here depicted portal architecture can basically also
operate on multiple servers for example. In the future this might be needed when
long-running tasks are included in the system for example. A more efficient messag-
ing protocol could be established between this distributed actors in the form of an
Enterprise Service Bus (ESB). This means that also data provider could create actor-
based systems locally which can be interconnected over the network. It was also
recently discovered by the author that Future types can also be encapsulated within
Promise types which enable a more abstract way to work with multiple Future in-
stances in parallel. These types also enable the capturing of specific types of futures
and the addition of implicit methods for their exploitation and combination. These
circumstances let the programming language Scala in overall appear as a good can-
didate for future projects in the domain of distributed data analysis frameworks in
space physics which will remain the main research topic of the author beyond the
finalisation of the here described IMPEx portal. With the here described advantages,
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the full spectrum of the research work done within this thesis can be justified easily
in the scope of the IMPEx project.

Nevertheless in particular with regard to user authentication and session-handling in
the frontend as well as caching mechanisms and persisting services in the backend
there is still a significant amount of functionality to be studied in the frame of the
Scala language. In addition to that the IMPEx community must be made more aware
of all advantages of asynchronous and concurrent programming in distributed Scala-
based systems whose primary features are already used within the architecture of the
IMPEx portal.
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A. IMPEx Configuration

The following listing represents the final version of the IMPEx configuration file which
is fetched regularly on the server to refresh the location and capabilities of all services
and resources available to the IMPEx portal. The configuration is also exposed to all
participating tools for remote access via the IMPEx portal.

Listing A.1: The IMPEx configuration XML file

1 <?xml version="1.0"?>

<impexconfiguration xmlns:xsi=

3 "http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=

5 "http://www.impex.org/2012/configuration.xsd

configuration.xsd"

7 xmlns="http://www.impex.org/2012/configuration.xsd">

<database type="simulation">

9 <name>FMI</name>

<description>

11 FMI Hybrid and MHD web archive

</description>

13 <dns>impex-fp7.fmi.fi</dns>

<methods>/ws/Methods_FMI.wsdl</methods>

15 <tree>/ws/Tree_FMI_HYB.xml</tree>

<tree>/ws/Tree_FMI_GUMICS.xml</tree>

17 <protocol>soap</protocol>

<protocol>http</protocol>

19 <info>http://hwa.fmi.fi/beta/login.php</info>

</database>

21 <database type="simulation">

<name>LATMOS</name>

23 <description>

LATMOS Hybrid simulations

25 </description>

<dns>impex.latmos.ipsl.fr</dns>

27 <methods>/Methods_LATMOS.wsdl</methods>

<tree>/tree.xml</tree>

29 <protocol>soap</protocol>
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<protocol>http</protocol>

31 <info>http://impex.latmos.ipsl.fr/LatHyS.htm</info>

</database>

33 <database type="simulation">

<name>SINP</name>

35 <description>

SINP Paraboloid Model simulations

37 </description>

<dns>dec1.sinp.msu.ru</dns>

39 <methods>

/~lucymu/paraboloid/SINP_methods.wsdl

41 </methods>

<tree>/~lucymu/paraboloid/SINP_tree.xml</tree>

43 <protocol>soap</protocol>

<protocol>http</protocol>

45 <info>

http://smdc.sinp.msu.ru/index.py?nav=model-para

47 </info>

</database>

49 <database type="observation">

<name>AMDA</name>

51 <description>AMDA observational database</description>

<dns>cdpp1.cesr.fr</dns>

53 <methods>

/AMDA-NG/public/wsdl/Methods_AMDA.wsdl

55 </methods>

<tree>

57 /AMDA-NG/data/WSRESULT/

getObsDataTree_LocalParams.xml

59 </tree>

<protocol>soap</protocol>

61 <protocol>http</protocol>

<info>http://clweb.cesr.fr/webservice.html</info>

63 </database>

<database type="observation">

65 <name>ClWeb</name>

<description>

67 ClWeb observational databases

</description>

69 <dns>clweb.cesr.fr</dns>

<methods>/Methods_CLWEB.wsdl</methods>

71 <tree>/clweb_tree.xml</tree>

<protocol>soap</protocol>

73 <protocol>http</protocol>

<info>http://clweb.cesr.fr/webservice.html</info>
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75 </database>

<tool>

77 <name>AMDA</name>

<description>

79 Multi-mission data analysis tool for

space plasma physics

81 </description>

<dns>http://amda.cdpp.eu/</dns>

83 <info>

http://cdpp-amda.cesr.fr/DDHTML/HELP/about.html

85 </info>

</tool>

87 <tool>

<name>ClWeb</name>

89 <description>

Multi-mission space plasma data plotting tool

91 </description>

<dns>clweb.cesr.fr</dns>

93 <info>http://clweb.cesr.fr/clweb_poster.pdf</info>

</tool>

95 <tool>

<name>3DView</name>

97 <description>

3D multi-mission visualisation tool

99 </description>

<dns>http://3dview.cdpp.eu/</dns>

101 <info>

http://3dview.cesr.fr/other/cdpp3dview_tutorial.pdf

103 </info>

</tool>

105 </impexconfiguration>
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B. IMPEx Portal Map

The following step-by-step description explains a typical workflow within the IMPEx
portal map. It represents a common use case of the portal which can be applied to a
variety of scientific applications and summarises the major user requirements evalu-
ated in section 5.2. This chapter will describe each of the eight steps with the help of
mock-ups depicting the preliminary design as it was presented and agreed upon at
the IMPEx technical meeting in Toulouse, September 20, 2013. Note that the mock-
ups are only illustrating six steps since the remaining two are recurring steps which
will be indicated as such in the enumeration on the next page.
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1. Figure B.1 on the following page shows the initial view of the IMPEx map with
it’s standard tool-based configuration. The Databases are representing each in-
cluded resource providing a data tree; the Services are displaying each included
resource enabling web service access; The Tools branch is showing all IMPEx-
associated tools capable of displaying selections made within the IMPEx portal.
Ultimately My Data represents a custom data store where intermediate selec-
tions and results of a workflow are persisted during a users session.

2. Figure B.2 on page 115 shows an example of a search conducted by the user
either by choosing respective predefined filters or by making a full-text search
by using the search-field. The entered keywords Mars (Target) and LATMOS
(Data provider) automatically highlight all resources related to either one of
them. The following sequence of steps needed in a typical workflow is indicated
with the grouping of resources in the IMPEx map: Databases, Services and Tools.

3. In this case the user selects the highlighted LATMOS Simulations database where
a dialog is showing the available simulation runs and respective parameters
as depicted in figure B.3 on page 116. The user can then choose one or more
parameters.

4. Figure B.4 on page 117 shows how the IMPEx map will display the consequent
steps an user can carry out with the current selection. In this case the user can
save the selection in My Data or delegate it to a web service call from the actually
selected data provider in the group of Services.

5. In this use case the user opens the dialog of LATMOS Data Access where a re-
spective method can be choosen depending on the before selected resource.
Note that it is considered here that the actually selected method requires ad-
ditional acquisition of observational data.

6. Figure B.5 on page 118 again indicates a path to the respective database and
service which needs to be used to obtain the required data for LATMOS Data
Access.

7. It is considered here that the user will open the respective dialogs for AMDA
Observations and AMDA Data Access in order to select the required resource and
conduct a web service call on AMDA.

8. The final view in figure B.6 on page 119 indicates that all necessary selections
have been successfully accomplished in order to finally visualise the acquired
data with the Tools group through the SAMP protocol or to save the dataset
selection in My Data. This is again indicated with respective paths on the IMPEx
map.
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C. IMPEx Portal Main Classes

The following class diagram shows the three basic entities which build up the ca-
pabilities needed for the IMPEx Registry Service and the IMPEx Data Access Service
respectively. As one can see the entities are represented by a class derived from the
Actor trait which identifies them as an actor for subsequent usage with the inbuilt
actor system of the Play framework. The requests to an actor are always handled
through a companion object which dispatches the respective messages to the actor.

The basic element of the Resource Layer at the IMPEx portal is built up with with
an DataProvider actor. It holds a respective tree from one database stored in the
IMPEx configuration which is initially loaded at startup of the integrated web server
in the Play framework. The DataProvider actors are immediately registered at the
RegistryService as childs. As one can see in the diagram the RegistryService
handles all requests sent to it’s childs. It simply maps the shared methods from the
actors to one set of access methods which is used subsequently by the portal system.
It is also basically possible to register new DataProvider actors dynamically in this
preliminary version.

All entities in the showed class diagramm are directly or indirectly related to the
ConfigService actor. The DataProvider actors are created based on the infor-
mation stored within the ConfigService on startup. The RegistryService is
using the ConfigService as reference point to check the integrity of incoming re-
quests and the pool of registered childs.

The respective source code of the IMPEx portal prototype can be obtained on re-
quest via the autor’s GitHub1 profile, see: https://github.com/FlorianTopf/
impex-portal.

1GitHub a project hosting platform for Git repositories: https://github.com/
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Glossary

3DView 3DView Multimission, a 3D visualization environment for spacecraft tra-
jectories and planetary ephemerides. see: http://3dview.cdpp.eu/,
p. 2.

AJAX Asynchronous JavaScript and XML, p. 65.

Akka A library for concurrent and distributed programming in Scala and Java,
p. 55.

API Application Programming Interface, a specification intended to be used as
an interface by software components to communicate with each other, p. 3.

ASCII American Standard Code for Information Interchange, a 7-bit character
encoding scheme.

CDPP Centre de Données de Physique des Plasmas, a french data center for space
plasma physics located in Toulouse.

ClWeb A web-based scientific analysis tool developed by CESR, Toulouse. see:
http://clweb.cesr.fr/, p. 2.

CPU Central Processing Unit, p. 15.

CSV Comma Separated Values, a generic way to display table data in ASCII
files.

DAO Data Access Object, p. 67.

DSL Domain Specific Language, p. 43.

Erlang A dynamically typed functional language enabling concurrent and dis-
tributed programming, p. 29.

FMI Finnish Meteorological Institute, a multi-disciplinary research agency lo-
cated in Helsinki.
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GLOSSARY

Haskell A pure functional programming language with a strict type system and
non-strict semantics, p. 14.

HMM Hybrid and MHD Models, a work package of the EU FP7-SPACE project
IMPEx, p. 50.

HTML Hypertext Markup Language, a markup language designed for the cre-
ation of static web content, p. 44.

HTML5 The successor of HTML4 markup language for web-based documents adding
new features e.g. for media and caching, p. 63.

HTTP Hypertext Transfer Protocol, the cornerstone for data communication in
the World Wide Web, p. 44.

I/O Input/Output, p. 26.

IWF Institut für Weltraumforschung or Space Research Institute of the Austrian
Academy of Sciences located in Graz, p. iii.

Java An object-oriented programming language, originally developed by Sun
Microsystems, p. 29.

JavaScript A browser-driven scripting language, mainly used for creating dynamic
HTML website content., p. 4.

JSON JavaScript Object Notation, a notation for structured documents used to
prepare data for clients in a web-based application, p. 65.

JVM Java Virtual Machine, p. 63.

LATMOS Laboratoire Atmosphéres, Milieux, Observations Spatiales, a french re-
search laboratory located in Paris.

LISP List Processing Language, the first functional programming language de-
veloped by John McCarthy in 1958, p. 14.

MAG Magnetometer.

MVC Model View Controller, a design pattern for web-based applications, p. 64.

netCDF Network Common Data Format, a set of encoding rules for making array-
based scientific data machine-readable.
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GLOSSARY

FP7 7th Framework Program for Research and Technological Development, a
funding programme created by the European Union, p. iii.

IMPEx Integrated Medium for Planetary Exploration, an EU FP7-SPACE collabo-
rative project, p. iii.

SOAP Simple Object Access Protocol, an XML based messaging protocol for web
services, p. 2.

AMDA Automated Multi-Dataset Analysis Tool, a web-based scientific analysis
tool developed by CDPP, Toulouse. see: http://amda.cdpp.eu/, p. 2.

XML-RPC A Remote Procedure Call protocol based on XML, p. 2.

SAMP Simple Application Messaging Protocol, an IVOA standard based on the
XML-RPC protocol, p. 2.

IVOA International Virtual Observatory Alliance, a community dedicated to the
development of a common VO, p. 2.

EuroPlaNet European Planetary Network, a EU FP7 research infrastructure project,
p. 48.

WSDL Web Service Description Language, an XML based description vocabulary
for web services, p. 48.

Play A development framework for web-based applications based on JAVA and
Scala, p. 62.

PMC Project Management Commitee, p. 70.

PMM Paraboloid Magnetospheric Models, a work package of the EU FP7-SPACE
project IMPEx, p. 50.

REST Representational State Transfer, a programming paradigm for web-based
application based on the HTTP protocol, p. 63.

RPC Remote Procedure Call, p. 58.

RTD Research & Technical Development, p. iii.

Ruby A dynamically typed, object-oriented interpreter language, p. 62.
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GLOSSARY

Scala A object-functional programming language running on the Java Virtual
Machine, p. iv.

SINP Skobeltsyn Institute of Nuclear Physics, a research institution located in
Moscow.

Smalltalk A message-oriented programming language, where data and programs
are represented as objects., p. 28.

SMDB Simulation Database.

SPASE Space Physics Archive Search and Extract, a data model for describing and
accessing space physics data, p. 49.

UAB User Advisory Board, p. 69.

URI Uniform Resource Identifier, a unique identifier for an abstract or physical
resource, p. 92.

URL Uniform Resource Locator, a special version of an URI used in the World
Wide Web to address web resources, p. 64.

VEX Venus Express, an ESA planetary mission to Venus.

VO Virtual Observatory, often referred to an distributed online data analysis
environment for space sciences, p. iv.

VOTable An XML standard developed by the IVOA for the interchange of data rep-
resented as a set of tables.

XML eXtensible Markup Language, a collection of encoding rules to make struc-
tured documents machine-readable, p. iv.

XPath A simple subset of the XQuery XML language, p. 50.
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If people do not believe that mathematics is simple, it is only because they do not realize how

complicated life is.

(John von Neumann)
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